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The spatiotemporal structure of reactive media supporting a solitary spiral wave is studied for systems where
the local reaction law exhibits a period-doubling cascade to chaos. This structure is considerably more complex
than that of simple period-1 oscillatory media. As one moves from the core of the spiral wave the local
dynamics takes the form of perturbed, period-doubled orbits whose character varies with spatial location
relative to the core. An important feature of these media is the existence of a curve where the local dynamics
is effectively period-1. This curve arises as a consequence of the necessity to reconcile the conflict between the
global topological organization of the medium induced by the presence of a spiral wave and the topological
phase space structure of local orbits determined by the reaction rate law. Due to their general topological
nature, the phenomena described here should be observable in a broad class of systems with complex-periodic
behavior.@S1063-651X~96!12611-8#

PACS number~s!: 82.20.Wt, 05.40.1j, 05.60.1w, 51.10.1y

I. INTRODUCTION

Spiral waves are spatiotemporal patterns typically found
in distributed media with active elements. They have been
studied extensively for excitable and oscillatory media.@1,2#
For both types of media, it is conventional to consider sys-
tems with two dynamical variables. Activator-inhibitor or
propagator-controller systems are often used to analyze spi-
ral dynamics in excitable media@2,3#, while the complex
Ginzburg-Landau equation is the prototypical model describ-
ing spatially distributed oscillatory media near the Hopf bi-
furcation point@4#.

Spiral waves may also exist in media where the local
dynamics supports complex-periodic or even chaotic motion
that cannot be represented in a two-dimensional phase plane.
Various patterns involving rotating spiral waves have been
observed in coupled map lattices or reaction-diffusion dy-
namics based on the Ro¨ssler chaotic attractor@5#. The three-
variable reaction-diffusion system with chaotic local reaction
kinetics given by the Willamowski-Ro¨ssler ~WR! rate law
@6# has been studied in@7#. Stable spiral waves exist in this
system and the nucleation and annihilation of spiral pairs
leading to spiral turbulence have been observed. The change
of dimensionality of phase space from two to three signifi-
cantly complicates the description of the dynamics. Descrip-
tions in terms of phase and amplitude, well established for
two-variable models, cannot be directly generalized. Al-
though several definitions have been proposed for the phase
of chaotic oscillations, all of them suffer from some degree
of ambiguity ~see@8# for a discussion!. Similar difficulties
arise in the consideration of nonchaotic oscillatory dynamics
which is nevertheless more complex than a single loop in
phase space; for example, in the oscillations that appear in
the period-doubling cascade to chaos or in the mixed-mode
oscillations observed in experiments in chemical systems.@9#

In this paper we study the spatiotemporal organization of
a reacting medium which supports a single spiral wave and
where the local rate law exhibits period-2n or chaotic oscil-
lations. Through an analysis of the dynamics at different spa-
tial points in the medium we show that a number of phenom-

ena arise forn.0 which are nonexistent in period-1
oscillatory media. Section II introduces the model and pre-
sents some features of the spiral wave behavior in a chaotic
medium. The local dynamics in the medium is considered in
detail in Sec. III. The analysis allows one to identify the loop
exchange process for local trajectories and the complicated
pattern of the distribution of different types of local dynam-
ics in the medium. A characteristic feature of this distribu-
tion is the existence of a curve where the local dynamics is
effectively period-1. Section IV introduces a coarse-grained
description of 2n-periodic local orbits which allows one to
characterize the local dynamics that is observed in the me-
dium. The topological conflict between the phase space
structure of local trajectories and the constraints imposed on
the medium by the existence of a spiral wave is considered in
Sec. V. We show that the observed changes of the local
orbits are necessary to maintain the global coherence of the
medium. The conclusions of the study are presented in Sec.
VI.

II. SPIRAL WAVES IN PERIODIC AND CHAOTIC MEDIA

While many aspects of the phenomena we describe in this
paper are general and apply to systems in which complex-
periodic or chaotic orbits exit, we consider situations where a
chaotic attractor arises by a period-doubling cascade and
confine our simulations to the Willamowski-Ro¨ssler model
@6#,
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Only theX, Y, andZ species vary with time; all others are
assumed fixed by flows of reagents. Study of this model
allows us to illustrate most features of the structure of a
spatially distributed medium supporting spiral waves. In ad-
dition, it is useful to deal with a specific example since cer-
tain aspects of the analysis of periodic and chaotic orbits in
high-dimensional concentration phase spaces rely on geo-
metrical constructions that pertain to a specific class of at-
tractors.

The rate law that follows from the mechanism~1! is

dcx~ t !

dt
5k1cx2k21cx

22k2cxcy1k22cy
22k4cxcz1k24

5Rx„c~ t !…,

dcy~ t !

dt
5k2cxcy2k22cy

22k3cy1k235Ry„c~ t !…, ~2!

dcz~ t !

dt
52k4cxcz1k241k5cz2k25cz

25Ry„c~ t !…,

where the rate coefficientsk i include the concentrations of
any species held fixed by constraints. We takek2 to be the
bifurcation parameter while all other coefficients are fixed:
(k1531.2, k2150.2, k2250.1, k3510.8, k2350.12,
k451.02,k2450.01,k5516.5,k2550.5). In this parameter
region the WR model has been shown@10# to possess a cha-
otic attractor arising from a period-doubling cascade ask2 is
varied in the interval@1.251,1.699#.

Figure 1 shows the four-banded chaotic attractor at
k251.567. Throughout the entire parameter domaink2
P@1.251,1.699# the system’s attractor is oriented so that its
projection onto the (cx ,cy) plane exhibits a folded phase
space flow circulating around the unstable focusc* . This
allows one to introduce a coordinate system in the Cartesian
(cx ,cy ,cz) phase space which is appropriate for the descrip-
tion of the attractor. We take the origin of a cylindrical co-
ordinate system (r,f,z) at c* so that thez and zero-phase-
angle (f50) axes are directed along thecz and cy axes,
respectively. The phase anglef increases along the direction
of flow as shown in Fig. 2.

For a period-1 oscillationf coincides with the usual defi-
nition of the phase and uniquely parametrizes the attractor
ra5ra(f),za5za(f),fP@0,2p). After the first period-
doubling this parametrization is no longer unique since the
periodic orbit does not close on itself afterf changes by

2p. For a period-2n orbit 2n of its points lie in any semi-
plane f5f0. The angle variableFP@0,2n•2p) may be
used to parametrize the period-2n attractor if one acknowl-
edges that allF from the interval@0,2n•2p) are different but
any two values ofF, F1 andF2, with F25F112n•2p, are
equivalent. For a chaotic orbit (n→`) all anglesFP@0,̀ )
are nondegenerate. WhenF is defined in this way it is no
longer an observable. Indeed, anyFP@0,2n•2p) can be rep-
resented asF5f1m•2p, where fP@0,2p) and mPN.
While f is just the angle coordinate in the (r,f,z) system
and is a single-valued function of the instantaneous concen-
trations f5f„cx(t),cy(t),cz(t)…, the integer number of
turns m can be calculated only if the entire attractor is
known.

The spatially distributed system is described by the
reaction-diffusion equation,

]c~x,t !

]t
5R„c~x,t !…1D¹2c~x,t !, ~3!

where we have assumed the diffusion coefficients of all spe-
cies are equal. If the rate law parameters correspond to a
period-1 limit cycle, we may initiate a spiral wave in the
medium and describe its dynamics and structure using well-
developed methods. The core of such a spiral wave is a to-
pological defect which is characterized by the topological
charge@11#

1

2p R ¹f~r !•dl5nt , ~4!

wheref(r ) is the local phase and the integral is taken along
a closed curve surrounding the defect. To obtain additional
insight into the organization of the medium around the defect
the local dynamics may be considered. For this purpose we
introduce a polar coordinate systemr5x2rd(t)5(r ,u) cen-
tered at the defect whose~possibly time-dependent position!
is rd(t). Let c(r ,t) be a vector of local concentrations at
space pointr5(r ,u). A local trajectory in the concentration
phase space fromt5t0 to t5t01t at pointr in the medium
will be denoted by

C~r ut0 ,t!5$c~r ,t !utP@ t0 ,t01t#%. ~5!

FIG. 1. Chaotic attractor for the Willamowski-Ro¨ssler model at
k251.567.

FIG. 2. Cylindrical coordinate frame (r,f,z) with origin at c*
in the (cx ,cy ,cz) phase space. A period-2 orbit is shown in this
coordinate frame.
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Figure 3 shows a number of local trajectoriesC(r ,uut0 ,t) at
points with increasing separationr from the defect for a
period-1 oscillation atk251.420. One sees that asr→0 the
oscillation amplitude decreases and the limit cycle shrinks to
the phase space pointcd* corresponding to the spiral core.
The results of our simulations show that the value ofcd*
differs only slightly fromc* which is chosen as the origin of
the coordinate frame (r,f,z). Thus, the anglef can serve as
a phase that characterizes all points in the period-1 oscilla-
tory medium except for a small neighborhood of the defect
with radiusr'1 @12#. The concentration fieldc(r ,t) is orga-
nized so that the instantaneous (cx ,cy ,cz) phase space rep-
resentation of the local concentration on any closed path in
the medium surrounding the defect is a simple closed curve
encirclingc* . For larger , r>rmax ~in Fig. 3 rmax'40), one
finds thatC(r ,uut0 ,t) ceases to change shape and is indis-
tinguishable from the period-1 attractor of~2! on the scale of
the figure.

One may initiate the analog of a defect in 2n-periodic and
chaotic media. The defect serves as the core of a spiral wave
which may exist even if the oscillation is not simply
period-1. A defect was introduced in the center of the me-
dium by fixingcz(r )5cz* and choosing initial concentrations
„cx(r ),cy(r )… to produce orthogonal spatial gradients. The
influence of the symmetry of the spatial domain on the dy-
namics was investigated by performing simulations on
square (L3L) arrays as well as on disk-shaped domains
with radiusR. No-flux boundary conditions were used to
prevent the formation of defects with opposite topological
charge within the medium and to minimize effects arising
from the self-interaction of spiral waves. The implementa-
tion of these initial and boundary conditions does not guar-
antee the formation of a solitary stable spiral wave; new
spiral pairs and other patterns~e.g., pacemakers! may appear
as a result of instabilities of the spiral arm and lead to spiral
turbulence. The ability to maintain a stationary spiral wave
in the center of the medium is sensitive to the parameters.
For various values of the system size and rate constants the
defect can move along expanding or contracting spiral tra-
jectories or trajectories with complex ‘‘daisylike’’ forms
@13#. Simulations show that the stability of a spiral wave
with a stationary core located at the center of the medium
increases with the system size and for rate constants lying

close to the chaotic regime within the period-doubling cas-
cade. In the following we restrict our considerations to pa-
rameters that lead to the formation of a single spiral wave
whose core is stationary and lies in the center of the domain.
Long transient times ('102 spiral revolutions! are often nec-
essary to reach this attracting state.

Figure 4 shows four consecutive states of the disk-shaped
medium withR580, separated by one period of the spiral
rotation,Tr , for k251.567, where the rate law supports a
chaotic attractor. Only within a sufficiently small region with
radiusr'20 centered on the defect does the medium return
to the same state after one period of spiral rotation. At points
farther from the defect the system appears to return to the
same state only after two spiral rotation periods. The transi-
tion from period-1 to period-2 behavior occurs smoothly
along any ray emanating from the defect.

III. ANALYSIS OF LOCAL DYNAMICS

More detailed information may be obtained from an in-
vestigation of the local dynamics of the medium supporting a
spiral wave. Local trajectoriesC(r ut0 ,t) were computed
along rays emanating from the defect at various anglesu.
Figure 5 ~left column! shows short-time trajectories
(t'10Tr) at different radii r and arbitrary but larget0.
These trajectories clearly demonstrate that the local dynam-
ics undergoes transformation from small-amplitude period-1
oscillations in the neighborhood of the defect to period-4
oscillations near the boundary.@14# The well-resolved
period-doubling structure ofC(r ut0 ,t) is destroyed if the
time of observationt becomes sufficiently large. The right
column of Fig. 5 shows trajectories sampled at the same
spatial locations but with the time of observationt580Tr .

FIG. 3. Local trajectories calculated for the period-1 oscillatory
medium (k251.420) at radii 5, 10, 20, 30, 40, 56, and fixedu. The
periodic orbits grow monotonically in size withr ; the difference
between trajectories corresponding tor540 andr556 is not re-
solved on the scale of the figure. Local orbits appear to be indepen-
dent of angleu. The location ofc* is designated by a diamond.

FIG. 4. Frames showing a rotating spiral wave in the chaotic
(k251.567) disk-shaped medium withR580. The local angle vari-
ablef(r ,u,t) is shown as grey shades. Time increases from left to
right and from top to bottom. The frames are separated by one
period of spiral revolutionTr . The integration time step is
Dt51024 and the scaled diffusion coefficient is
DDt/(Dx)251022.
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These long-time trajectories appear to be ‘‘noisy’’ period-1
and period-2 orbits: the trajectory in panel~d! is a thickened
period-1 orbit while both the period-2@panel ~b!# and
period-4@panel~c!# orbits now appear as thickened period-2
orbits in panels~e! and ~f! with trajectory segments lying
between the period-2 bands. Ast tends to infinity the result-
ing local attractor,C(r ), is independent oft0 and the angle
u.

A. First-return maps

An analysis of the local trajectories shows that the period-
doubling phenomenon is not a monotonic function ofr . Con-
sider the first-return map constructed from a Poincare´ section
of a local trajectoryC(r ut0 ,t) in the following way: choose
the planecy5cy* with normal n along thecy axis as the
surface of section and select those intersection points where
n forms a positive angle with the flow. This yields a set
$„cx(r ,tn),cz(r ,tn)…unP@1,N#% where t0,t1,t2,•••,tN
,t01t is a sequence of times at which the trajectory crosses
the surface of section. For the WR model the points
„cx(r ,tn),cz(r ,tn)… lie on a curve which deviates only
slightly from a straight line. Consequently, we may choose
either cx or cz to construct the first-return map. Let
jn(r )5cx(r ,tn) denote a point in the Poincare´ section. The
relationjn11(r )5 f „jn(r )… between the successive intersec-
tions of the Poincare´ surface defines the local first return
map,

g~r ut0 ,t!5$„jn~r !,jn11~r !…utnP@ t0 ,t01t#,nP@1,N#%.
~6!

Combining such maps for allr along some ray emanating
from the defect at an angleu, we obtain the cumulative first-
return map,

G~uut0 ,t!5 ø
rP~0,R!

g~r ,uut0 ,t!. ~7!

For sufficiently long timest, g is independent ofu and t0.
Letting limt→`g(r ,uut0 ,t)5g(r ), we may write the corre-

sponding cumulative first-return map as
G5 limt→`G(uut0 ,t). Figure 6 showsG for the disk-shaped
medium under consideration. The first return map is com-
prised of several branches which can be identified as thread-
like maxima of the first-return map point density. These
branches are parametrized by the spatial coordinate withr
increasing from the bottom left corner to the ends of the
wide-spread arms ofG ~cf. Fig. 6!. Generally for r<40
points lying on linesjn(r )1jn11(r )5const belong to the
sameg(r ) though overlaps of neighboringg-map points are
common. Thus, measuring the separation between branches
of G in the direction perpendicular to the bisectrix one can
determine the character ofC(r ). In spite of some evidence of
fine structure, from the fact that map points are located along
the bisectrix in Fig. 6 one can infer that up tor520 the local
dynamics is predominantly period-1. Starting fromr521 ~la-
beled bya in Fig. 6!, G splits into two branches which
diverge from the bisectrix indicating a period-2 structure of
C(r ). As r increases these branches bend and cross the bi-
sectrix atr531 ~labeled byb in Fig. 6!, indicating a return
of the local dynamics to the period-1-like pattern. After this
crossing the separation between the branches grows rapidly
reflecting the development of period-2 structure. An exami-
nation of the main branches ofG reveals period-4 fine struc-
ture. This period-4 structure is visible forr.28 and beyond
r'43 ~labeled byc in Fig. 6! it becomes prominent and can
be easily seen in the structure ofC(r ) ~cf. Fig. 5!.

B. Loop exchange andV curve

From the analysis of the time series of the local concen-
tration one may determine the processes responsible for the
differences between the local trajectoriesC(r ut0 ,t) for
short- and long-time intervalst ~cf. Fig. 5!. Figure 7 shows
the signature of this phenomenon forcx(r ,t) at r550 in a
disk-shaped array withR580 andk251.544, a parameter
value corresponding to period-4 dynamics in the rate law.
Every second maximum ofcx(r ,t) is indicated by diamond
or cross symbols. The envelope curves obtained by joining
like symbols cross att5tex , thus the curve which connected
large-amplitude maxima att,tex joins low-amplitude
maxima att.tex and vice versa. This implies that if at some
t0,tex the representative pointc(r ,t0) was found on the

FIG. 5. Local trajectoriesC(r ut0 ,t) for the disk-shaped medium
(k251.567,R580): ~a, d! r510; ~b, e! r535; ~c, f! r576. The
observation times aret'10Tr for left column andt580Tr for
right column. All the trajectories are shown on the same scale.

FIG. 6. Cumulative first return mapG constructed for the disk-
shaped array (k251.567,R580). The letters indicate ther values
discussed in the text:~a! 20, ~b! 31, and~c! 43.
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small-amplitude band of period-2, then att5t01nT2.tex ,
whereT2 is the period of the period-2 oscillation, it will be
found on the larger-amplitude band@15#. This phenomenon
can be interpreted as an exchange of the local attractor’s
bands. Indeed, approachingtex from the left one finds that
with each period of oscillation the small-amplitude band
grows while large-amplitude band shrinks. Att5tex both
bands reach and pass each other. For a short period of time
near tex the bands are indistinguishable in phase space and
the oscillation is effectively period-1. It is this exchange phe-
nomenon that produces loops that fill the gap between the
period-2 bands in the long-time local trajectories~cf. Fig. 5!
and contribute to a sparsely scattered ‘‘gaslike’’ density in
G ~cf. Fig. 6!.

An examination of the loop exchanges at different loca-
tions in the medium revealed the existence of the following
spatiotemporal pattern. At any fixed location the exchange
occurs periodically, with periodTex'55Tr , independent of
the position (r ,u) in the medium. For sufficiently large radii
(r>35) this periodicity takes an even stronger form: the en-
tire oscillation pattern, however complex, returns with period
Tex to the same configuration. This property smoothly disap-
pears as the defect is approached. For two locations
r15(r 0 ,u1) andr25(r 0 ,u2) at the same radiusr 0 from the
defect but at different angles, the oscillation pattern at one of
them, sayr2, can be obtained from the corresponding pattern
at r1 through translation in time byTex(u22u1)/2p, the sign
of the translation being defined by sign(u22u1). In view of
this observation it is convenient to introduce a coordinate
system (r 8,u8) rotating with angular velocity 2p/Tex rela-
tive to the laboratory-fixed coordinate system (r ,u). In this
rotating frame the local dynamics is described by a time-
homogeneous pattern, unique for every spatial pointr 8, and
the locations in the medium where loop exchange occurs
correspond to points where the local dynamics always has a
period-1-like character. The set of loop exchange points con-
stitute a curveV with spiral symmetry which winds twice
around the defect~see Fig. 8!. The two convolutions ofV lie
close to circular arcs with radii 19 and 32. This result may be
compared with the data obtained from an examination ofG
~cf. Fig 6!. The crossings of the bands ofG occur at loci
lying on V.

Close to the defect the resolution of the loop exchange
event is difficult. At r,18 the difference between the

period-2 bands is comparable to the band thickness and the
determination ofV for smaller radii becomes impractical.
Variation of the system parameters results in a change of the
characteristics ofV; for example, the radius of the domain
R does not affect the shape of theV but does change the
angular velocity with which the coordinate frame (r 8,u8) in
which V is immobile rotates relative to the laboratory-fixed
frame (r ,u). The angular velocity is higher for smaller sys-
tem sizes: a decrease inR from 80 to 60 reduces the period
Tex by a factor of 0.42. A change in the rate constantsk i
leads to a deformation ofV, although the identification of
V as a set of exchange points remains and it retains the
topology of a curve passing from the defect to the boundary.
In Sec. V we shall show that the existence ofV is essential
for the maintenance of spatial continuity in media composed
of 2n-periodic oscillators.

Simulations on a square array with dimension 80380 ~all
parameters were the same as for the disk! show that a rotat-
ing frame is not necessary to observe the time-homogeneous
local dynamics ofC(r ut0 ,t)5C(r ut). For this system geom-
etry theV curve is fixed in the medium, a slight wobbling of
the defect~frame origin! being neglected. Figure 9 shows a

FIG. 7. Concentration time seriescx(r ,t) at r550 for the disk-
shaped array (k251.544,R580) showing the loop exchange pro-
cess. Time unit equals 105 Dt.

FIG. 8. Sketch of theV curve for the disk-shaped array
(k251.567,R580). Points where the period-2 band exchange was
observed are indicated by diamonds.

FIG. 9. Local trajectories calculated on circle withr555 for the
square array. All the trajectories are shown on the same scale.
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number of long-time (t@Tr) local trajectories on a circle
with radiusr 0555 surrounding the defect in the square do-
main. One sees a significant dependence of the shape of
C(r 0 ,uut) on the angleu. The local trajectories range from
a period-1 orbit at the intersection withV to the well-
established period-4 orbit observed in a certain range ofu.
To highlight the loop exchange phenomenon, a particular
time instantt5t* is marked on all the trajectories~see Fig.
9!. Compare the twoC(r 0 ,uut) at the locationsu1 and u2
chosen symmetrically on either side of the pointu5uV

where the circle intersectsV. Visual inspection of these or-
bits shows that their shapes are essentially identical but rep-
resentative pointsc(u1 ,t* ) andc(u2 ,t* ) appear on different
period-2 bands of the corresponding orbits. This clearly dem-
onstrates that the period-2 bands do not just approach but
indeed pass each other atu5uV , exchanging their positions
in phase space. Since it is not necessary to work in a rotating
coordinate system in the case of a square domain, one may
resolve the fine structure of the local trajectories to a greater
degree as can be seen in Fig. 10~a,b! which shows the cu-
mulative first return mapG(u) and a magnification of a por-
tion of its structure~compare with Fig. 6!. The results show
thatG is comprised of four branches with the fine structure
of period-4 resolved even in the vicinity of the defect
@r55 is the closest distance to the defect for whichg(r ) is
shown#. Any perturbation of the self-organized pattern of
local oscillator synchronization due to irregular motion of
the defect, influence of the boundary or the presence of an-
other defect may obliterate subtle fine structure of the local
trajectories. In such a circumstance one is able to observe
only two gross branches ofG and their split nature is not
resolvable except for very larger . These observations allow
one to suppose that the local trajectories may have the same

number of fine structure levels everywhere in the medium
but the degree to which different levels are resolved in their
phase portraits strongly depends on the position in the me-
dium relative to the defect. In view of this hypothesis the
phenomenon of spatial period-doubling should not be under-
stood in the literal sense but rather as an enhanced ability to
resolve the fine structure with the increase of separation from
the defect.

The stationary rotating spiral wave arises from the com-
plex defect-organized cooperation of local oscillators. Each
location in the medium develops some site-specific pattern of
oscillation which often differs significantly from that of the
corresponding rate law attractor and varies substantially from
one space point to another. There exists a~possibly rotating!
reference frame (r 8,u8), centered on the moving defect, in
which local dynamics takes a simple, time-homogeneous
form. Each point of the medium in this frame can be as-
signed a unique oscillatory pattern, different for different
spatial points. This allows one to introduce the notion of a
defect-organized field associated with (r 8,u8) which speci-
fies the pattern of dynamics in every spatial point of the
medium. This field exhibits a complicated architecture lack-
ing of any simple symmetries~which can be easily seen from
the shape of theV curve!. The slow rotation of this field in
disk-shaped arrays restores the circular symmetry of the so-
lution. Although the manner in which different types of local
dynamics are distributed in the medium is complex, it is not
disordered. Due to the continuity of the medium maintained
by the diffusion, it obeys certain topological principles stud-
ied in the subsequent sections.

IV. COARSE-GRAINED DESCRIPTION
OF LOCAL TRAJECTORIES

In the preceding section the phase space shapes of the
local trajectories were shown to vary considerably but
smoothly from one point in the medium to another. To de-
scribe the transformations of these orbits into each other, it is
useful to introduce a description which captures only topo-
logically significant changes of phase portraits and disre-
gards unimportant details. To understand the topological
principles which determine the global organization of the
defect-organized field one also needs a means to compare the
time dependence of local trajectories. In this section we
present a scheme that allows one to partition the continuum
of all the observed local trajectories into a finite number of
discrete classes according to their phase space shape and
time dependence.

A. Representation of attractors by closed braids

Consider a period-2n attractor,P2n, consisting of 2
n loops

in the concentration phase spaceP5(cx ,cy ,cz). Using the
cylindrical coordinate system introduced earlier, we may
projectP2n on the (r,f) plane preserving its original orien-
tation and three-dimensional~3D! character by explicitly in-
dicating whether self-intersections correspond to over or un-
der crossings. Such a projection shows a span off free from
crossings where loops are essentially parallel to each other.
This span can be used to number loops, say, in the order of
their separation from the origin. This procedure mapsP2n

onto a closed braidB̄2n @16#. Figure 11 illustrates the con-

FIG. 10. Cumulative first-return mapG(u) for the square array
(k251.567,L580,u50) ~top panel! and a magnification of a por-
tion of its structure~bottom panel!. Letters on the bottom panel
denote radii for which corresponding portions ofG(u) are con-
structed:~a! 9; ~b! 19; ~c! 25, and~d! 31.
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struction of the braid representation for theP4 attractor of
the WR model. It is convenient to subdivide the closed braid
B̄2n into the open braidB2n ~separated by dashed lines in Fig.
11! and its closure where threads run parallel to each other.
The direction of the flow on the attractor is indicated by the
arrows. Each crossing on the projection ofP4 corresponds to
an elementary braids i which refers to the fact that thread
i overcrosses threadi11 ~cf. Fig. 17 in Appendix for nota-
tion rule!. An undercrossing will be designated bys i

21 . A
braid may be described by a braid word that gives the order
and types of crossings of braid threads. For example, for the
closed braid corresponding toP4 ~cf. Fig. 11!
P4°B̄45s3s2s1s3s2. The closed braidB̄2n corresponding
to P2n can be represented by several braid words, which can
be transformed into one another by a set of allowed moves
~see Appendix!.

Any braid word representingP2n induces a permutation
p i
(n) describing the order in which loops ofP2n are visited

during one oscillation periodT2n. In general, eachP2n attrac-
tor is represented by several possiblep i

(n) , their number
growing with n; for example, forP2 there is only one per-
mutation p1

(1)5(21
12) while two permutationsp1

(2)5(3421
1234)

~which corresponds to the braid shown in Fig. 11! and
p2
(2)5(4312

1234) exist forP4. With a given loop numbering con-
vention each braid word represents a unique permutation
while one permutation can be induced by many braid words.

B. Symbolic representation of periodic orbits

Take two period-2n oscillators whose trajectories
c1(t),c2(t) lie on the same attractor, but which are neverthe-
less nonidentical since at any given timet their dynamical

variables are differentc1(t)Þc2(t). Since the orbits are pe-
riodic there is a timedt such thatc1(t1dt)5c2(t) for any
t. This operation can be formally considered as an action of
translation operatorTdt on the trajectory of the first oscilla-
tor:

Tdtc1~ t !5c1~ t1dt !5c2~ t !. ~8!

The concentration time seriesc(t) of the first oscillator then
appears to be shifted backward bydt relative to that of the
time series of the second oscillator ifdt.0 and forward
otherwise. Of course, trajectories corresponding to different
attractors cannot be made to correspond by such time trans-
lations, e.g.,P2n attractors described by different permuta-
tions p i

(n) have different patterns of oscillation, but even if
two P2n lie in the samep i

(n) class their actual shapes inP
may differ significantly.

To compare the local dynamics at different points in the
medium one needs to single out the most important charac-
teristic features of the oscillation pattern while discarding
unnecessary details. A coarse-grained symbolic description
of trajectories appears to be useful for this purpose. We as-
sume that the timest1 ,t2 , . . . ,t2n at which the trajectory
crosses a surface of sectionf5f0 ~see Sec. II! are approxi-
mately equally spaced, independent of the choice off0.
Thus, the phase pointc(t) moving alongP2n takes approxi-
mately the same timeT2n/2

n to traverse each loop of the
attractor@17#. At t5t0 let the phase point of the period-2n

orbit be on thej 0-th loop of P2n, at t5t01T2n/2
n on the

j 1-th loop, and so on~where j lP@1,2n#,lP@1,2n#, jÓ l ) until
at t5t01T2n the phase point returns to thej 0-th loop and the
pattern (j 0 , j 1 , . . . ,j 2n) repeats. The symbolic string
sj5( j 0 , j 1 , . . . ,j 2n) constructed in this way captures the
most significant gross features of the oscillation pattern it
describes. In this coarse-grained representation the number
of possible nonidentical trajectories corresponding to a par-
ticular p i

(n) of P2n is finite and the different trajectories are
simply given by the 2n cyclic permutations ofsj . Likewise
the time translation operators constitute a finite groupTl ,l
P@22n21,2n21). They act on the symbolic string represent-
ing the orbit to give one of its cyclic permutations. From its
definition it can be easily seen thatp i

(n) serves as a symbolic
permutation representation ofT11 for the corresponding
i -th permutation class ofP2n. Indeed, consider as an example
a period-4 oscillation whose representative point lies on loop
3 at the reference moment of timet5t0. Then for the pattern
of oscillation determined by p1

(2) the state reads
s15(3241). To obtain the new state translated byT4/4 back-
ward one acts ons1 by the permutation representationp1

(2)

of the T11 operator to get

T11s15~3421
1234!~3241!5~2413!5s2 , ~9!

which correctly describes the result of the shift of the initial
states1.

V. GLOBAL ORGANIZATION OF MEDIUM

A. Period-1 regime

We now return to the spatially distributed medium and
begin by reviewing some properties of the local dynamics in

FIG. 11. Projection of theP4 attractor on the (cx ,cy) plane~top
panel! and the corresponding closed braidB̄4 ~bottom panel!.
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the vicinity of a stable defect with topological charge
nt561 in a period-1 oscillatory medium. Consider a cyclic
path G5$r5r 0.rmax,uP@0,2p)% surrounding the defect.
Here rmax is a radius such that for all (r ,u),r.rmax,u
P@0,2p) the shape of the local orbit in phase spaceP is
independent of (r ,u) and closely approximates that of the
period-1 attractor of the mass action rate law~see Sec. II!. If
one starts at an arbitrary point (r 0 ,u0)PG one finds that the
instantaneous local phasef(r ,t) changes by 2p or 22p
~depending on the sign of the topological charge! alongG.
Let us now fix a particular time instantt5t* and construct
the set of pointsS5$c(r ,t* ),rPG% as a phase space image
of instantaneous concentrations at points lying onG. The
property of a defect~4! and the continuity of the medium
insure thatS is a simple closed curve winding once around
c* . Figure 12~a! shows theS-curve constructed for the con-
tourG with radiusr 0555, r 0.rmax in a period-1 oscillatory
medium with k251.420. Since all the points on the
S-curve lie at the same time on the local trajectories
C(r ut0 ,t), rPG with t*P@ t0 ,t01t#, and for G with
r 0.rmax all the local trajectories are the same and approxi-
mated by the period-1 attractor of the system~2!, the
S-curve simply coincides with this attractor for anyt* @cf.
Fig. 12~a!#. TheS-curve constructed for an arbitrary simple
closed path encircling the defect in the medium possesses the
same property as long as the path lies in the open region
r.rmax.

This result can be reformulated in terms of time transla-
tions of local trajectories as follows. Let the local trajectory
C(r 0 ,u0ut0 ,t) at the point (r 0 ,u0)PG be taken as a refer-
ence, then all of the local trajectories onG can be obtained
through the translation ofC(r 0 ,u0ut0 ,t) by some time
dt(u2u0) ~see Sec. IV!. The condition ~4! implies that
dt(u2u0) is a monotonically increasing~decreasing! func-
tion such thatdt(2p)56T1 whereT1 is the period of os-

cillation and the sign is that ofnt . Thus, the oscillation pat-
tern is continuously time shifted alongG such that upon
return to the initial point it has experienced translation by the
period.

B. Period-2n regime

For 2n-periodic and chaotic media property~4! holds
where f(r ,t) should be understood as the angle variable
introduced in Sec. II. This can be seen from the following
argument. Take a period-2 medium with rate constants cho-
sen in the vicinity of the bifurcation from period-1 to
period-2 such that the attractorP2 of ~2! lies infinitesimally
close toP1 from which it bifurcated. Due to the continuity of
the solutions of the reaction-diffusion equation~3!, the value
of rf(r ,t)dl cannot change abruptly when the bifurcation
parameter is changed through the period-doubling bifurca-
tion. This implies that theS-curve constructed for a contour
G in a period-2n medium, as in case of a simple period-1
medium, is a closed curve which loops once aroundc* in
phase space. This is illustrated in panel~b! of Fig. 12, which
showsS for contourG with radiusr 0555 in medium with
k251.567 and timet5t* . Recall again that the points of the
S curve have to lie on the local trajectoriesC(r ut0 ,t), r
PG ~cf. Fig. 9, where points designated by diamonds lie on
S for the chosen time moment and contour shown in the
figure!. Since the local trajectories in a period-2n medium
loop several times aroundc* , the curveS which winds only
once (nt561) aroundc* cannot span the entire local tra-
jectory as is the case for a period-1 medium. As one sees
from Fig. 12~b!, S follows the larger loop of the local trajec-
tory, which for G with r 0555 is typically a period-2 orbit
~cf. Fig. 9!, and instead of making the second turn on the
smaller loop, it crosses the gap between the loops and closes
on itself. Although the shape ofS changes with time~see@7#
for details!, for any t* there exist segments ofS which con-
nect different loops of local trajectories. This behavior of the
S curves would be impossible if loop exchanges were non-
existent. The analysis shows that the segments ofS covering
the gaps between the loops of the local trajectories are im-
ages of points onG which lie close to the intersection with
theV curve. Thus, the loop exchanges observed in period-
2n media are necessary to reconcile the contradiction be-
tween the one-loop topology of theS curves determined by
the presence of a defect and the multiloop topology of the
local trajectories determined by the local rate law.

The change of the local trajectories along the contourG in
period-2n media can be considered in terms of time transla-
tions if one adopts a generalization of the translation opera-
tion in the following way. In a period-2 medium let the con-
tour G and the reference point (r 0 ,u0)PG be chosen so that
G intersects theV curve in the single point (r 0 ,uV) and
suppose that these points are sufficiently separated from each
other. Since the shapes of the local orbits change signifi-
cantly along any closed path surrounding a defect~cf. Fig. 9!
these trajectories cannot be made to coincide by time trans-
lation as this operation is defined in Sec. IV. Nevertheless,
the general features of the temporal pattern of the trajectories
are preserved@e.g., sharp maxima inci(t) time series# and
for two locations (r 0 ,u1) and (r 0 ,u2) one is able to find a

FIG. 12. S curves~shown by diamonds! constructed forG with
r 0555 in period-1 oscillatory (k251.420) ~a! and chaotic
(k251.567) ~b! media. Solid curves represent short-time local tra-
jectories onG.
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time shift Dt(u1 ,u2) such that some measure of the devia-
tion between the trajectories, say,

M „Dt~u1 ,u2!…5E
t0

t01t

uc~1!~ t1Dt !2c~2!~ t !udt, ~10!

is minimized. Choosing the local trajectoryC(r 0 ,u0ut0 ,t) as
a reference and comparing it to all the other local orbits on
G one is able to define the time shift function
dt(u2u0)[Dt(u,u0). The shift function dt(u2u0) in-
creases~or decreases! monotonically and almost linearly@see
Fig. 13~a!# with d(dt)/du'(T2/2)2p everywhere onG ex-
cept for a small neighborhood ofu5uV where it exhibits
break. Indeed, the loop exchange atu5uV causes the dis-
continuity of dt(u2u0). At u5uV both loops of the local
orbit become equivalent and the oscillation is effectively
period-1 with periodT15T2/2. Since the loops exchange at
u5uV , to find the best match~10! between local trajectories
sampled at points (r 0 ,uV2«) and (r 0 ,uV1«), one needs to
translate one of the trajectories bydt5T11O(«). This can
be easily seen in Fig. 13~b!, which displays twocx(t) series
calculated at spatial points lyingu2uV5610° on either
side ofuV on G.

C. Trajectory transformations along G

The transformation of local trajectories alongG can be
imagined to occur as a result of two separate processes. Sup-
pose everywhere onG exceptu5uV the shape of the local
trajectories inP is the same and is equivalent to that of
C(r 0 ,u0ut0 ,t). Then all the other local trajectories
C(r 0 ,uut0 ,t),uP@0,2p),uÞuV can be found by time trans-
lation of C(r 0 ,u0ut0 ,t) by dt(u2u0)5@T2(u2u0)/2#2p.

Assume that all the deformations of the phase space portrait
of the local trajectory which take place alongG, including
the exchange of loops, occur at the pointu5uV so that the
passage throughuV shifts the oscillation bydtp5T15T2/2.
Then the result of the continuous time translation that occurs
during 2p circulation alongG may be described by the ac-
tion of the Tnt operator (nt561), while the result of the

loop exchange is described by the operatorT2nt
@18#. The

total transformation of the local oscillation after a complete
cycle overG is equivalent to the identity transformation and
thus the result is in accord with continuity of the medium. If
one makes the assumption that loop exchange does not occur
on some contourG encircling a defect withuntu51, the time
shift functiondt(u2u0) becomes monotonic and continuous
everywhere onG. As a result one arrives at the incorrect
conclusion that starting from the point (r 0 ,u0) with the os-
cillation pattern symbolically represented by the strings1,
says15(12), and moving alongG in the clockwise direction
one returns to the same point (r 0 ,u012p)[(r 0 ,u0) but
with the oscillation pattern shifted byT2/2 and given by
s25(21)Þs1. Note that this contradiction does not arise in
the period-1 oscillatory medium where circulation over any
closed path encircling a defect results in the translation by
the entire period which automatically satisfies the continuity
principle. Thus the necessity of loop exchanges in period-
2n, n.0 media with a topological defect demonstrated ear-
lier in this section in terms ofS curves is now explained in
terms of time translations.

The results for the period-2 medium can be generalized
for anyn.1 using the following hypothesis. From the main
property of a topological defect~4! it follows that integration
of an infinitesimal continuous shiftd(dt) over any closed
path surrounding a defect results in a total shift by
6T2n/2

n and can be symbolically described by theTnt opera-
tor. Numerical simulations demonstrate the existence of time
translation discontinuity points such that sum ofdt jumps
over these points amounts to a shift of7T2n/2

n described by
the T2nt

operator. The locations of these points in the me-

dium can be identified with theV curve and the origin of the
time translation discontinuities with the loop exchange phe-
nomenon. The relation~A6! of the Appendix connects trans-
lations and loop exchanges and allows one to predict the
number and the kind of loop exchanges necessary to perform
the requiredT2nt

translation.

D. Examples

Consider again the square 80380 array with rate con-
stants corresponding to chaotic regime (k251.567). As
period-4 fine structure is the highest level of local organiza-
tion resolved in the medium, it is sufficient to use the for-
malism developed above forP4 to describe the local dynam-
ics. The analysis shows that in the bulk of the medium the
oscillation is given by thep1

(2)5(3421
1234) pattern@19#. Using

this data and the results presented in the Appendix one can
easily enumerate all the sequences of exchanges resulting in
T11 translation. Indeed, one should expect either exchange
of loops 3 and 4 followed by the exchange of period-2 bands
(3412
1234) or first the period-2 bands exchange followed by ex-
change of loops 1 and 2. Figure 14 is a schematic represen-

FIG. 13. Period-2 local concentration time seriescx(r ,t) calcu-
lated on a cyclic pathG surrounding the defect:~a! series sampled
at four consecutive locations separated bydu530°; ~b! two series
sampled at locations chosen symmetrically on either side of the
intersection with theV curve.
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tation of the medium with a negatively charged (nt521)
defect in the center and theV curve displayed.

Consider the change of the oscillation pattern along ray
ABC emanating from the defect as the value ofr increases
~see Fig. 10 for the cumulative first-return map constructed
for this ray!. The pattern of oscillationsA5(4132) corre-
sponding to permutationp1

(2)5(3421
1234) can be followed from

r55 to r519 where the period-2 bands undergo exchange.
This results in the switch to the oscillation pattern described
by p2

(2)5(4312
1234) seen atr521. The patternp1

(2) is restored
after loops 1 and 2 exchange atr522 and and this pattern
persists until another exchange occurs atr528. Using trans-
lation operatorT11 one can express the transition of the state
sA (r,20) through the sequence of loop exchanges de-
scribed above to the statesB5(1324) ~for 22,r,28) as
sB5T11sA . The same shift can be achieved by continuous
translation along the pathADEFB which does not intersect
V but winds once counter-clockwise around the defect. The
cx(t) time series at pointsA,D,E,F andB are displayed in
Fig. 15 and demonstrate that this is the case. Continuing to
advance along the rayABC, one finds that atr528 loops 3
and 4 exchange and oscillation switches once more to the
state corresponding top2

(2) . After the period-2 band ex-
change atr532 the pattern corresponding top1

(2) is rein-
stated and remains unchanged for allr.32. Again the oscil-
lation at r.32, described symbolically bysC5(3241),

appears to be shifted byT4/4 relative tosB and by T4/2
relative tosA .

The existence of aT4/4 shift after crossingV can also be
seen from the results for the disk-shaped array withR580.
Figure 16 shows a segment of thecx(r ,t) time series
sampled in a fixed frame (r ,u) at r576. In this coordinate
systemV slowly rotates clockwise~againnt521) with pe-
riod Tex . Two time windows each of lengthT4 marked by
dotted lines and separated byDt58T4 allow one to see how
the oscillation state~4132! is substituted by its forward
T4/4 translation~2413! after theV curve passes the observa-
tion point att5tex .

VI. CONCLUSIONS

General principles underlie the organization of
2n-periodic or chaotic media supporting spiral waves. As in
simple oscillatory media, the core of a spiral is a topological
defect which acts as an organizing center determining dy-
namics in its vicinity; however, the structural organization of
the medium that arises from the existence of the defect is far
more complicated. Due to the absence of a conventional
definition of phase for oscillations more complex than
period-1, the identification of a defect in terms of the relation
~4! is not obvious and requires the introduction of~often
model-dependent! phase substitutes which for some systems
may be provided by angle variables. Despite the complica-
tions with the definition of phase, one can identify a defect in
terms of local trajectories. Indeed, as one moves away from
the defect the local dynamics takes the form of a progression
of period-doubled orbits, from near harmonic, small-
amplitude, period-1 orbits to ‘‘noisy’’ period-2l orbits,
wherel is a function of variables such as diffusive coupling
and the system size and shape.

The presence of a defect imposes topological constraints
on the global organization of medium as well. As was shown
above, when 2n.nt the 2

n-loop structure of the local trajec-
tories conflicts with the period-nt structure of theS-curve
and a complex, asymmetric, spatial pattern of local dynam-
ics, the defect-organized field, arises as a result of the neces-
sity to maintain the continuity of the medium. The most
prominent characteristic feature of this field is theV curve
defined as the set of points where the local dynamics most

FIG. 14. Sketch of theV curve for the square array
(k251.567,L580). The points were obtained from simulations.
The rayABC intersectsV at locations with radii 20 and 31.

FIG. 15. Concentration time seriescx(r ,t) calculated at points
A,D,E,F,B of the square array shown in Fig. 14.

FIG. 16. Segment of the concentration time seriescx(r ,t) cal-
culated for the disk-shaped array (k251.567,R580) at r576
showing theT4/4 time shift of the oscillation pattern~see explana-
tion in the text!.
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closely resembles period-1. This signals the exchange of
period-2 bands. If the local trajectories possess structure finer
than period-2, other loop exchanges leading to more subtle
changes in the local orbits can be found in the vicinity of
V. The net result of these exchanges is to produce a time
shift of the trajectories which compensates for the smooth
time translation accumulated on continuous paths. Since the
topological continuity must be observed on any arbitrarily
large closed path encircling a defect and, therefore, this con-
tour has a point of intersection withV, a single defect in a
period-2n (n.0) medium cannot be localized.

We point out again that many of the phenomena we have
discussed above are not dependent on the existence of a
period-doubling cascade or chaotic local dynamics, although
this is the case we have analysed in detail. Reaction-
diffusion systems with local complex periodic orbits in phase
space dimensions higher than two should exhibit similar fea-
tures when they support spiral waves. It should be possible to
experimentally probe the phenomena described in this paper.
The appropriate parameter regime can be determined from
investigations of well-stirred systems. For example, period-
doubling and chaotic attractors have been observed in the
Belousov-Zhabotinsky reaction.@20# If the spiral wave dy-
namics is then studied in a continuously-fed-unstirred reactor
@21#, one should be able to observe the characteristics of the
spiral dynamics and the loop exchange process that serve as
signatures of the phenomena described above.
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APPENDIX: BRAID MOVES AND
LOOP EXCHANGE OPERATORS

In this appendix we make use of the projection of the
period-doubled attractorsP2n onto closed braidsB̄2n ~see

Sec. IV! to show how loop exchanges affect the pattern of
oscillation. We demonstrate that those combinations of loop
exchanges that produce identity transformations ofP2n result
in nontrivial time translations of trajectories.

Each closed braidB̄2n is represented by a set of non-
identical braid words with their number rapidly growing with
n. Without violation of the topology ofB̄2n they can be
transformed into one another by the following set of moves
~see, e.g. @16#!: 1. commutation relation,s is j5s js i ,
u i2 j u>2; 2. type 2 Reidemeister move,s is i

21

5s i
21s i51; 3. type 3 Reidemeister move,s is i11s i

5s i11s is i11; 4. first Markov move,s iSs i
215s i

21Ss i

5S,SPB; whereB is a set of open braids. While the first
three rules are common for all braids, rule 4 is specific for
closed braids. Indeed, it can be written in the form
s iS5Ss i which, for elementary braidss i , corresponds to
moving s i around B̄2n resulting in the exchange of the
closed braid loops@cf. Fig. 17~d!#. Type 1 Reidemeister~or
second Markov! moves are not allowed since they do not
preserve the number of loops, an essential feature ofP2n

attractors. While rules 1, 2 and 3 do not affectp i
(n) , the first

Markov move does~except for the degenerate case ofP2

which is represented by the single permutationp1
(1)). Thus

any number of rearrangements affecting only the braidB2n

of the closed braidB̄2n leave the braid word in the same
permutation classp i

(n) , while each application of the first
Markov move yields a new permutation class.

1. Loop exchanges forP2 and P4

We now examine how the loop exchanges influence the
patterns of oscillation for the period-2 and period-4 attrac-
tors. ForP2 one has only the single braid words1(s1

21) and
the single permutationp1

(1)5(21
12) induced bys1. Two dif-

ferent symbolic statess15(12) ands25(21) are possible for
the period-2 oscillation with respect to some fixed time
frame. We introduce an operatorA1

(1) whose action on the
closed braid representingP2 is to moves1 by 2p in a di-
rection opposite to the flow. The result of the action of this
operator, which is the first Markov move forS51, is to
leave the attractorP2 unchanged; however, one finds that
loops 1 and 2 have exchanged their locations in phase space.
In the time series for the dynamical variableci(t) the ex-
change can be seen as a substitution of taller maxima~2! by
shorter maxima~1! and vice versa. If this process is followed
in time it produces the characteristic pattern shown in Fig. 7.
Thus, application ofA1

(1) to P2 induces a transformation of
the oscillation states1 into s2 and vice versa. This can be
symbolically described as an action of an exchange operator
A1
(1) represented by the permutation (21

12):

A1
~1!s15~21

12!~12!5~21!5s2 ,
~A1!

A1
~1!s25~21

12!~21!5~12!5s1 .

One sees that the action ofA1
(1) is equivalent to that of

T11 which translates the oscillation pattern by half a period.
The inverse of the braid operatorA1

(1) can be introduced in
an analogous way as an operator movings1 along the direc-

FIG. 17. Conventional designations and basic braid moves:~a!
definition of elementary braidss i ands i

21 ; ~b! type 2 Reidemeister
move; ~c! type 3 Reidemeister move; and~d! first Markov move
(S represents arbitrary braid!.
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tion of the flow. It corresponds to an exchange operator
(A1

(1))215T21 acting on strings. Since forP2 application of
T11 or T21 results in essentially the same states the sign of
the shift is chosen to maintain consistency with correspond-
ing operators forP2n, n.1. Double application ofA1

(1) re-
sults in translation by a full period and thus in the identity
operator

~A1
~1!!25~A1

~1!!2251. ~A2!

TheP4 attractor possesses a richer set of transformations.
Since under coarse-graining braid words which induce the
samep i

(n) are indistinguishable, we can single out two es-
sential representativesS15s3S for p1

(2)5(3421
1234) and

S25s1S for p2
(2)5(4312

1234), whereS stands fors2s1s3s2.
Let A1

(2) be an operator onB̄2 which moves the double-
thread crossing~cf. large dashed box in Fig. 11! S by 2p in
the direction opposite to the flow, analogous to the action of
A1
(1) on s1 for B̄2. In fact, the action ofA1

(2) can be seen as
an exchange of the period-2 bands ofP4, each consisting of
two period-4 loops. UnlikeA1

(1) the operatorA1
(2) alternates

braid words and the corresponding pattern-defining permuta-

tions S1 ,p1
(2)↔

Al
(2)

S2 ,p2
(2) . The application ofA1

(2) induces
transformations of symbolic stringssj which again can be
described by the action of an exchange operatorA1

(2) repre-
sented by the permutation (3412

1234). Due to the apparent simi-
larity of action ofA1

(1) andA1
(2) on the corresponding attrac-

tors,A1
(2) inherits the algebraic properties ofA1

(1) . Indeed,
A1
(2) produces identity operator when applied twice and,

thus, is equal to its inverse.
Finer rearrangement of theP4 loop structure is provided

by the action ofA2
(2) defined as an operator which moves the

single crossing~enclosed in the smaller box in Fig. 11! by
2p in the direction opposite to flow. From the structure of
B̄4 one sees that after application ofA2

(2) the single crossing
does not return to the same location inP but appears on the
other period-2 band; thus, braid words andp i

(n) permutations
alternate. Depending on the initial state, the application of
A2
(2) results in different loop exchanges. In the case of

S15s3S action ofA2
(2) leads to the exchange of loops 3 and

4 and results in the string transformation described by the
exchange operatorA2

(2) with symbolic representation (1243
1234).

When it acts onS25s1S it exchanges loops 1 and 2 and the
permutation representation ofA2

(2) changes to (2134
1234). The

inverse ofA2
(2) moves the single crossing along the flow and

produces opposite results; i.e., acting onS1 it leads to
1↔2 exchange and when applied toS2 it results in the
exchange 3↔4.

Note the difference between action ofAi
(n) on braids and

the action of exchange operatorsAi
(n) on symbolic strings.

While several operationsAi
(n) applied to the same initial

braid word lead to equivalent final words~e.g., A1
(2) and

A2
(2)) the resulting loop exchanges and, thus, their permuta-

tion descriptions, can be quite different ((3412
1234) and (1243

1234) for
the example chosen!. Consequently, compositions of braid
operations returning the braidB̄2n to its initial state~e.g.,
A2
(2)+A2

(2)) may induce nontrivial translations ofsj . To dem-

onstrate this let (A2
(2))2 act on the trial states15(3241).

Applying the rules one obtains

~A2
~2!!2s15~2134

1234!~1243
1234!~3241!5~4132!5T12s1 , ~A3!

thus relating the simultaneous loop exchange (13)↔(24)
with translation of the period-4 oscillation by half of a pe-
riod. This implies as well that application ofA2

(2) four times
results in the identity string transformation
(A2

(2))45T1451 and, therefore, (A2
(2))215(A2

(2))3. Compo-
sitions of braid operatorsA1

(2) andA2
(2) provide another ex-

ample of how identity braid operators induce nontrivial
string transformations. Since both operators and their in-
verses alternate braid wordsS1↔S2 the application of the
composition of any two of them returns the braid to the same
p i
(2) permutation class and, thus, the resulting string trans-

formation is equivalent to some translation. The relations for
the compositions of theA1

(2) andA2
(2) operators can be ob-

tained directly from their symbolic representations:

A1
~2!+A2

~2!5~1243
1234!~3412

1234!5A2
~2!+A1

~2!5~3412
1234!~2134

1234!5~3421
1234!

5p1
~2!5T11 ,

~A4!

A1
~2!+~A2

~2!!215~2134
1234!~3412

1234!5~A2
~2!!21+A1

~2!5~3412
1234!~1243

1234!

5~4312
1234!5p2

~2!5T21 .

These relations are constructed using the assumption that the
initial state of the braid isS1. Although application to an
alternative initial condition changes actual permutation rep-
resentations of the exchange operators it yields algebraically
equivalent results. From~14! one sees that all the exchange
operators commute and their compositions provide operators
which translate the oscillation by all the allowed multiples of
T4/4.

2. Loop exchanges forP2n attractors

A generalization of the phenomena discussed above to
arbitraryn may be inferred from the observation of the struc-
tural organization of the closed braidsB̄2n corresponding to

FIG. 18. BraidB8 constructed for theP8 attractor.
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period-doubled attractorsP2n. Indeed,B̄2n11 can be obtained
from B̄2n by doubling each thread ofB̄2n and adding a single
crossing on top to preserve simple connectivity of the con-
struction. The braidB̄2n arising as a result ofn successive
iterations of this procedure can be subdivided inton non-
overlapping structurally similar blocks of braids
Sm
(n) ,m51,n. This principle of structural organization is il-

lustrated in Fig. 18 representingB8 and its three crossing
blocks shown in a series of boxes with decreasing sizes. The
analysis shows that these blocks can be moved as whole
entities alongB̄2n without interference from each other re-
sulting in the exchange of those loops along which they
move. The essential parts of these moves can be represented
by a setAm

(n) of 2p movements of structural blocksSm
(n) so

that A1
(n) corresponds to the largest block and results in an

exchange involving all the 2n loops, A2
(n) corresponds to

movement of next-smaller braid block and results in the ex-
change of 2n21 loops, and so on. The transformations of
time trajectories resulting from exchanges of loops can be

again described by the action of permutation operatorsAm
(n)

on symbolic stringssj . The fact that the crossing blocks
move independently results in the commutivity of operators
Am
(n) with each other. The geometry ofB̄2n also defines the

basic algebraic property ofAm
(n) demonstrated above for the

n51,2 examples

~Am
~n!!2

m
51, mP@1,n#. ~A5!

Some compositions of the exchange operators yield transla-
tion operatorsTl wherelP@22n21,2n21). For the discussion
of the phenomena described in Sec. III only the operator
T11 and its inverse are of particular interest. Using induction
from the analysis of cases with smalln one may infer the
general expression for theT11 translation operator :

T115 )
m51

n

Am
~n! . ~A6!

@1# A.S. Mikhailov,Foundations of Synergetics I. Distributed Ac-
tive Systems~Springer-Verlag, Berlin, 1994!; Chemical Waves
and Patterns, edited by R. Kapral and K. Showalter~Kluwer,
Dordrecht, 1995!.

@2# A.T. Winfree, The Geometry of Biological Time~Springer-
Verlag, Berlin, 1980!.

@3# See P. Fife, inNon-Equilibrium Dynamics in Chemical Sys-
tems, edited by C. Vidal and A. Pacault~Springer-Verlag, Ber-
lin, 1984!.

@4# Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence
~Springer-Verlag, Berlin, 1984!.

@5# L. Brunnet, H. Chate´, and P. Manneville, Physica D78, 141
~1994!.

@6# K.-D. Willamowski and O.E. Ro¨ssler, Z. Naturforsch.35a, 317
~1980!.

@7# A. Goryachev and R. Kapral, Phys. Rev. Lett.76, 1619~1996!.
@8# M. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. Lett.

76, 1804~1996!; A. Pikovsky, M. Rosenblum, G. Osipov, and
J. Kurths~to be published!.

@9# J. Maselko and H.L. Swinney, J. Chem. Phys.85, 6430~1986!;
S.K. Scott,Chemical Chaos~Clarendon Press, Oxford, 1991!.

@10# X.-G. Wu and R. Kapral, J. Chem. Phys.100, 5936~1994!.
@11# N.D. Mermin, Rev. Mod. Phys.51, 591 ~1979!.
@12# Since in the following we consider local trajectories for points

sufficiently far from a defect, the difference betweencd* and
c* is neglected.

@13# These types of spiral wave core behavior were observed and
studied in excitable media. See, for instance, A.T. Winfree,
Chaos1, 303 ~1991!; D. Barkley, Phys. Rev. Lett.72, 164
~1994!.

@14# The difference between period 2 and period 4 is not clearly
seen in Fig. 4 due to insufficient spatial resolution of the phase
using the color-coding scheme.

@15# We assume that the oscillation pattern can possess period-4,
period-8, or higher order fine structure but we are only con-
cerned with whether the representative point falls within the
smaller or larger band of period-2.

@16# J.S. Birman, Braids, Links and Mapping Class Groups
~Princeton University Press, Princeton, 1974!.

@17# This assumption is valid for the WR model since the motion
along longer loops is faster than that along shorter loops.

@18# Since operatorsTnt andT2nt
are equivalent in their action on a

period-2 oscillation the signs are chosen to preserve consis-
tency with casesn.1.

@19# This pattern also corresponds to all theP4 attractors within
period-doubling cascade found numerically for the system~2!.

@20# F. Argoul, A. Arneodo, P. Richetti, J.C. Roux, and H.L. Swin-
ney, Acc. Chem. Res.20, 436 ~1987!.

@21# G.S. Skinner and H.L. Swinney, Physica D48, 1
~1991!.

54 5481STRUCTURE OF COMPLEX-PERIODIC AND CHAOTIC . . .


