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Structure of complex-periodic and chaotic media with spiral waves
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The spatiotemporal structure of reactive media supporting a solitary spiral wave is studied for systems where
the local reaction law exhibits a period-doubling cascade to chaos. This structure is considerably more complex
than that of simple period-1 oscillatory media. As one moves from the core of the spiral wave the local
dynamics takes the form of perturbed, period-doubled orbits whose character varies with spatial location
relative to the core. An important feature of these media is the existence of a curve where the local dynamics
is effectively period-1. This curve arises as a consequence of the necessity to reconcile the conflict between the
global topological organization of the medium induced by the presence of a spiral wave and the topological
phase space structure of local orbits determined by the reaction rate law. Due to their general topological
nature, the phenomena described here should be observable in a broad class of systems with complex-periodic
behavior.[S1063-651X96)12611-9

PACS numbes): 82.20.Wt, 05.40+j, 05.60+w, 51.10+y

I. INTRODUCTION ena arise forn>0 which are nonexistent in period-1
oscillatory media. Section Il introduces the model and pre-
Spiral waves are spatiotemporal patterns typically foundsents some features of the spiral wave behavior in a chaotic
in distributed media with active elements. They have beermnedium. The local dynamics in the medium is considered in
studied extensively for excitable and oscillatory mefia?] ~ detail in Sec. lll. The analysis allows one to identify the loop
For both types of media, it is conventional to consider sysexchange process for local trajectories and the complicated
tems with two dynamical variables. Activator-inhibitor or pattern of the distribution of different types of local dynam-
propagator-controller systems are often used to analyze sp-ﬁS in the medium. A characteristic feature of this distribu-
ral dynamics in excitable medig2,3], while the complex tion is the existence of a curve where the local dynamics is
Ginzburg-Landau equation is the prototypical model describeffectively period-1. Section IV introduces a coarse-grained
ing spatially distributed oscillatory media near the Hopf bi- description of 2-periodic local orbits which allows one to
furcation point[4]. characterize the local dynamics that is observed in the me-
Spiral waves may also exist in media where the localdium. The topological conflict between the phase space
dynamics supports complex-periodic or even chaotic motiorstructure of local trajectories and the constraints imposed on
that cannot be represented in a two-dimensional phase plari®e medium by the existence of a spiral wave is considered in
Various patterns involving rotating spiral waves have beerSec. V. We show that the observed changes of the local
observed in coupled map lattices or reaction-diffusion dy-Orbits are necessary to maintain the global coherence of the
namics based on the Bsler chaotic attractd5]. The three- medium. The conclusions of the study are presented in Sec.
variable reaction-diffusion system with chaotic local reactionV!.
kinetics given by the Willamowski-Rssler (WR) rate law
[6] has been studied §7]. Stable spiral waves exist in this , qpiza| WAVES IN PERIODIC AND CHAOTIC MEDIA
system and the nucleation and annihilation of spiral pairs
leading to spiral turbulence have been observed. The change While many aspects of the phenomena we describe in this
of dimensionality of phase space from two to three signifi-paper are general and apply to systems in which complex-
cantly complicates the description of the dynamics. Descripperiodic or chaotic orbits exit, we consider situations where a
tions in terms of phase and amplitude, well established fochaotic attractor arises by a period-doubling cascade and
two-variable models, cannot be directly generalized. Al-confine our simulations to the Willamowski-Bsler model
though several definitions have been proposed for the pha$é],
of chaotic oscillations, all of them suffer from some degree
of ambiguity (see[8] for a discussion Similar difficulties ky Ky
arise in the consideration of nonchaotic oscillatory dynamics A+X=2X, X+Y=2Y,
which is nevertheless more complex than a single loop in kg k2
phase space; for example, in the oscillations that appear in
the period-doubling cascade to chaos or in the mixed-mode ks Ky
oscillations observed in experiments in chemical syst¢géis. Ast+tY=A,, X+Z=A;, D
In this paper we study the spatiotemporal organization of k-3 k-4
a reacting medium which supports a single spiral wave and
where the local rate law exhibits period-8r chaotic oscil- ks
lations. Through an analysis of the dynamics at different spa- A, +Z2=2Z.
tial points in the medium we show that a number of phenom- ks
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FIG. 1. Chaotic attractor for the Willamowski-Bsler model at
K,=1.567.

. o FIG. 2. Cylindrical coordinate framep(¢,z) with origin atc*
Only the X, Y, andZ species vary with time; all others aré i, the (, c,,c,) phase space. A period-2 orbit is shown in this
assumed fixed by flows of reagents. Study of this modekgordinate frame.

allows us to illustrate most features of the structure of a
spatially distributed medium supporting spiral waves. In ad- . For a period-2 orbit 2" of its points lie in any semi-
dition, it is useful to deal with a specific example since Celplane ¢=¢,. The angle variableb c[0,2"-27) may be

tain aspects of the analysis of periodic and chaotic orbits in,qaq to parametrize the perio8-attractor if one acknowl-

high-dimensional concentration phase spaces rely on geyqes that alb from the interva[0,2"- 27) are different but
metrical constructions that pertain to a specific class of alany two values ofb, @, and®d,, with d,=d, +2"- 27, are

tractors. . X .
o equivalent. For a chaotic orbih(~<) all angles® [0,=)

The rate law that follows from the mechanist is are nondegenerate. Whdn is defined in this way it is no

longer an observable. Indeed, aby=[0,2"- 27) can be rep-

% = K1Cy— K*lci_ KaCxCyt K*ZCi_ K4CyCyt K_4 res.ented- agl)= ¢+m- 2, Where 1) e_[0,277) and meN.
While ¢ is just the angle coordinate in the,,z) system
=R,(c(1)), and is a single-valued function of the instantaneous concen-
trations ¢= (c,(1),cy(t),c,(t)), the integer number of
dey(t) , turns m can be calculated only if the entire attractor is
—gr ~ KeCxCy T K2y~ KaCyt k_3=Ry(c(t)), (2  known. _ o _ _
The spatially distributed system is described by the
reaction-diffusion equation,
ded®) CyCyt K4+ KsCy— K_sC2=R,(c(t))
dt KalxlzT K47 K5Lz™ K50, y (1)), ac(xt) ,
o =R(c(x,t))+DVc(x,t), 3

where the rate coefficients; include the concentrations of
any species held fixed by constraints. We taketo be the
bifurcation parameter while all other coefficients are fixed:
(k1=31.2, k_.1=0.2, k_,=0.1, k3=10.8,k_3=0.12,
k4=1.02x_4=0.01k5=16.5k_5=0.5). In this parameter
region the WR model has been shofii®)] to possess a cha-

where we have assumed the diffusion coefficients of all spe-
cies are equal. If the rate law parameters correspond to a
period-1 limit cycle, we may initiate a spiral wave in the

medium and describe its dynamics and structure using well-
developed methods. The core of such a spiral wave is a to-

otic attractor arising from a period-doubling cascad& a& : S . :
varied in the interva[1.251.1.699 Eﬁgglg[eill]defect which is characterized by the topological

Figure 1 shows the four-banded chaotic attractor at
k,=1.567. Throughout the entire parameter domain 1
e[1.251,1.699 the system’s attractor is oriented so that its - § Veé(r)-di=n,, (4)
projection onto the ¢,c,) plane exhibits a folded phase 2@
space flow circulating around the unstable foads This
allows one to introduce a coordinate system in the Cartesiawhere(r) is the local phase and the integral is taken along
(cx.Cy.C;) phase space which is appropriate for the descripa closed curve surrounding the defect. To obtain additional
tion of the attractor. We take the origin of a cylindrical co- insight into the organization of the medium around the defect
ordinate systemg,¢,z) atc* so that thez and zero-phase- the local dynamics may be considered. For this purpose we
angle (=0) axes are directed along tfog and ¢, axes, introduce a polar coordinate system x—rq(t)=(r,6) cen-
respectively. The phase angjeincreases along the direction tered at the defect whogpossibly time-dependent positipon
of flow as shown in Fig. 2. is rq(t). Let c(r,t) be a vector of local concentrations at

For a period-1 oscillatiors coincides with the usual defi- space point=(r, ). A local trajectory in the concentration
nition of the phase and uniquely parametrizes the attractophase space froi=t, to t=t,+ 7 at pointr in the medium
pa=pal(®),2a=24(d),p[0,27). After the first period- Will be denoted by
doubling this parametrization is no longer unique since the
periodic orbit does not close on itself aftér changes by C(r|ty, ) ={c(r,t)|te[ty,to+ 7]} (5)
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FIG. 3. Local trajectories calculated for the period-1 oscillatory
medium (k,=1.420) at radii 5, 10, 20, 30, 40, 56, and fixedThe
periodic orbits grow monotonically in size with; the difference
between trajectories correspondingrte 40 andr =56 is not re-
solved on the scale of the figure. Local orbits appear to be indepen-
dent of angled. The location ofc* is designated by a diamond.

Figure 3 shows a number of local trajectore&, 6|t,,7) at
points with increasing separatian from the defect for a
period-1 oscillation ai,=1.420. One sees that as»0 the FIG. 4. Frames showing a rotating spiral wave in the chaotic
oscillation amplitude decreases and the limit cycle shrinks t@x,=1.567) disk-shaped medium wikk=80. The local angle vari-
the phase space poig} corresponding to the spiral core. able(r,6,t) is shown as grey shades. Time increases from left to
The results of our simulations show that the valuechf right and from top to bottom. The frames are separated by one
differs only slightly fromc* which is chosen as the origin of Period of spiral revolutionT, . The integration time step is
the coordinate framen( ¢,2). Thus, the angle can serve as 2t=10 , a”‘f'z the scaled diffusion coefficient is

a phase that characterizes all points in the period-1 oscilla? AV (Ax)"=10"%.

tory medium except for a small neighborhood of the defect ) ) o ) _

with radiusr~ 1 [12]. The concentration field(r,t) is orga- ~ €lose to the chaotic regime within the period-doubling cas-
nized so that the instantaneous, (c, ,c,) phase space rep- cade. In the following we restrict our considerations to pa-
resentation of the local concentration on any closed path if@meters that lead to the formation of a single spiral wave
the medium surrounding the defect is a simple closed curv¥/hose core is stationary and lies in the center of the domain.
encirclingc*. For larger, r=r ., (in Fig. 31 ,5,~40), one LONg transient times+ 17 spiral revolutiongare often nec-

finds thatC(r, 6|t,,7) ceases to change shape and is indis-€SSary to reach this attracting state. .
tinguishable from the period-1 attractor @ on the scale of Figure 4 shows four consecutive states of the disk-shaped
the figure. medl_um withR= 80, separated by one period of the spiral
One may initiate the analog of a defect ifrgeriodic and ~ rotation, T, for x,=1.567, where the rate law supports a
chaotic media. The defect serves as the core of a spiral wayd12otic attractor. Only within a sufficiently small region with
which may exist even if the oscillation is not simply radiusr~20 centered on the defect does the medium return
period-1. A defect was introduced in the center of the mei© the same state after one period of spiral rotation. At points
dium by fixingc,(r)=c? and choosing initial concentrations farther from the defect the system appears to return to the
(cx(),c,(r)) to produce orthogonal spatial gradients. TheSame state on_Iy after two _splral rotation periods. The transi-
influence of the symmetry of the spatial domain on the dy_t|on from period-1 to_ period-2 behavior occurs smoothly
namics was investigated by performing simulations on2/0Ng any ray emanating from the defect.
square [ XL) arrays as well as on disk-shaped domains
with radius R. No—fllux boundary co_nditions were used.to 1. ANALYSIS OF LOCAL DYNAMICS
prevent the formation of defects with opposite topological
charge within the medium and to minimize effects arising More detailed information may be obtained from an in-
from the self-interaction of spiral waves. The implementa-vestigation of the local dynamics of the medium supporting a
tion of these initial and boundary conditions does not guarspiral wave. Local trajectorie€(r|tg,7) were computed
antee the formation of a solitary stable spiral wave; newalong rays emanating from the defect at various angles
spiral pairs and other patterfs.g., pacemakersnay appear Figure 5 (left column shows short-time trajectories
as a result of instabilities of the spiral arm and lead to spira(7~10T,) at different radiir and arbitrary but largd,.
turbulence. The ability to maintain a stationary spiral waveThese trajectories clearly demonstrate that the local dynam-
in the center of the medium is sensitive to the parameterdcs undergoes transformation from small-amplitude period-1
For various values of the system size and rate constants tlscillations in the neighborhood of the defect to period-4
defect can move along expanding or contracting spiral traescillations near the boundary14] The well-resolved
jectories or trajectories with complex “daisylike” forms period-doubling structure o€(r|ty,7) is destroyed if the
[13]. Simulations show that the stability of a spiral wave time of observationr becomes sufficiently large. The right
with a stationary core located at the center of the mediuncolumn of Fig. 5 shows trajectories sampled at the same
increases with the system size and for rate constants lyingpatial locations but with the time of observatios 80T, .
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FIG. 6. Cumulative first return ma@ constructed for the disk-
shaped array&,=1.567R=280). The letters indicate the values
discussed in the tex{a) 20, (b) 31, and(c) 43.

FIG. 5. Local trajectorie€(r|ty, 7) for the disk-shaped medium
(kp=1.567R=80): (a, d r=10; (b, & r=35; (c, ) r=76. The  gponding cumulative first-return map as
qbservatlon times are%.lOTr. for left column andr=80T, for G=lim,_..G(8|ty,7). Figure 6 showss for the disk-shaped
right column. All the trajectories are shown on the same scale. medium under consideration. The first return map is com-
prised of several branches which can be identified as thread-
like maxima of the first-return map point density. These
branches are parametrized by the spatial coordinate with
increasing from the bottom left corner to the ends of the
wide-spread arms o6 (cf. Fig. 6. Generally forr<40
points lying on linesé,(r)+ &, 1(r)=const belong to the
sameg(r) though overlaps of neighboringrmap points are
common. Thus, measuring the separation between branches
of G in the direction perpendicular to the bisectrix one can
determine the character 6fr). In spite of some evidence of
fine structure, from the fact that map points are located along

An analysis of the local trajectories shows that the periodthe bisectrix in Fig. 6 one can infer that uprte: 20 the local
doubling phenomenon is not a monotonic functiomo€on-  dynamics is predominantly period-1. Starting from 21 (la-
sider the first-return map constructed from a Poinsaation beled bya in Fig. 6), G splits into two branches which
of a local trajectoryC(r|tq,7) in the following way: choose diverge from the bisectrix indicating a period-2 structure of
the planecy:c; with normal n along thec, axis as the C(r). As r increases these branches bend and cross the bi-
surface of section and select those intersection points whegectrix atr =31 (labeled byb in Fig. 6), indicating a return
n forms a positive angle with the flow. This yields a setof the local dynamics to the period-1-like pattern. After this
{(ey(r,tn),c(r,t))ne[1N]} where to<t,<t,<.-.<ty  Crossing the separation between the branches grows rapidly
<t,+ 7 is a sequence of times at which the trajectory crossekeflecting the development of period-2 structure. An exami-
the surface of section. For the WR model the pointshation of the main branches &f reveals period-4 fine struc-
(cu(r,t,),c(r,t,) lie on a curve which deviates only ture. This period-4 structure is visible for-28 and beyond
slightly from a straight line. Consequently, we may choose ~43 (labeled byc in Fig. 6) it becomes prominent and can
either ¢, or c, to construct the first-return map. Let be easily seen in the structure ©{r) (cf. Fig. 5.
£,(r)=c,(r,t,) denote a point in the Poincasection. The
relation &, 1(r)=f(&,(r)) between the successive intersec- B. Loop exchange andQ curve
tions of the Poincaresurface defines the local first return
map,

These long-time trajectories appear to be “noisy” period-1
and period-2 orbits: the trajectory in parid) is a thickened
period-1 orbit while both the period-Zpanel (b)] and
period-4[panel(c)] orbits now appear as thickened period-2
orbits in panels(e) and (f) with trajectory segments lying
between the period-2 bands. Agends to infinity the result-
ing local attractorC(r), is independent of, and the angle
6.

A. First-return maps

From the analysis of the time series of the local concen-
tration one may determine the processes responsible for the
9(r|te, P ={(& (1), &ns 1(M)|tne[to, to+ 71,n e [1N]}. differences between the local trgjectori@(rho,r) for
short- and long-time intervals (cf. Fig. 5. Figure 7 shows
the signature of this phenomenon foy(r,t) atr=>50 in a
Combining such maps for all along some ray emanating disk-shaped array witlR=80 and x,=1.544, a parameter
from the defect at an angl® we obtain the cumulative first- value corresponding to period-4 dynamics in the rate law.
return map, Every second maximum daf,(r,t) is indicated by diamond
or cross symbols. The envelope curves obtained by joining
G(6lto,7)= Lé . g(r,blto, 7). D like symbols cross at=t,,, thus the curve which connected
r=OR large-amplitude maxima at<t., joins low-amplitude
For sufficiently long timesr, g is independent of) andt,.  maxima att>t., and vice versa. This implies that if at some
Letting lim,_..g(r,0|ty,7)=g(r), we may write the corre- ty<te, the representative poird(r,t) was found on the
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FIG. 7. Concentration time serieg(r,t) atr =50 for the disk- 80
shaped array £,=1.544R=80) showing the loop exchange pro- X

cess. Time unit equals 1QAt.

FIG. 8. Sketch of theQ) curve for the disk-shaped array
small-amplitude band of period-2, thentatt,+nT,>t.,, (xk,=1.567R=280). Points where the period-2 band exchange was
whereT, is the period of the period-2 oscillation, it will be observed are indicated by diamonds.
found on the larger-amplitude bafd5]. This phenomenon
can be interpreted as an exchange of the local attractorgeriod-2 bands is comparable to the band thickness and the
bands. Indeed, approaching, from the left one finds that determination of(} for smaller radii becomes impractical.
with each period of oscillation the small-amplitude bandVariation of the system parameters results in a change of the
grows while large-amplitude band shrinks. Att., both  characteristics of); for example, the radius of the domain
bands reach and pass each other. For a short period of tinke does not affect the shape of tlée but does change the
neart,, the bands are indistinguishable in phase space anangular velocity with which the coordinate frame (') in
the oscillation is effectively period-1. It is this exchange phe-which € is immobile rotates relative to the laboratory-fixed
nomenon that produces loops that fill the gap between th&ame (r,6). The angular velocity is higher for smaller sys-
period-2 bands in the long-time local trajectories Fig. 5  tem sizes: a decrease ffrom 80 to 60 reduces the period
and contribute to a sparsely scattered “gaslike” density inT., by a factor of 0.42. A change in the rate constakts
G (cf. Fig. 6). leads to a deformation df}, although the identification of

An examination of the loop exchanges at different loca-() as a set of exchange points remains and it retains the
tions in the medium revealed the existence of the followingtopology of a curve passing from the defect to the boundary.
spatiotemporal pattern. At any fixed location the exchangén Sec. V we shall show that the existence(bfis essential
occurs periodically, with period.,~55T,, independent of for the maintenance of spatial continuity in media composed
the position ¢, 8) in the medium. For sufficiently large radii of 2"-periodic oscillators.

(r=35) this periodicity takes an even stronger form: the en- Simulations on a square array with dimensior<@D (all
tire oscillation pattern, however complex, returns with periodparameters were the same as for the diiow that a rotat-
Tey to the same configuration. This property smoothly disaping frame is not necessary to observe the time-homogeneous
pears as the defect is approached. For two locationcal dynamics ofC(r|ty,7) =C(r|7). For this system geom-
ri=(rq,61) andr,=(rq,6,) at the same radiug, from the etry theQ) curve is fixed in the medium, a slight wobbling of
defect but at different angles, the oscillation pattern at one ofhe defect(frame origin) being neglected. Figure 9 shows a
them, sayr,, can be obtained from the corresponding pattern

atr, through translation in time b¥,(6,— 6,)/27, the sign

of the translation being defined by sigh(- 6,). In view of

this observation it is convenient to introduce a coordinate

system (',0’) rotating with angular velocity 2/T,, rela-

tive to the laboratory-fixed coordinate system§). In this

rotating frame the local dynamics is described by a time-

homogeneous pattern, unique for every spatial poinand

the locations in the medium where loop exchange occurs

correspond to points where the local dynamics always has a

period-1-like character. The set of loop exchange points con-

stitute a curve) with spiral symmetry which winds twice

around the defedsee Fig. 8 The two convolutions of) lie

close to circular arcs with radii 19 and 32. This result may be

compared with the data obtained from an examinatiofs of

(cf. Fig 6). The crossings of the bands & occur at loci

lying on .

Close to the defect the resolution of the loop exchange FIG. 9. Local trajectories calculated on circle withk 55 for the
event is difficult. At r<18 the difference between the square array. All the trajectories are shown on the same scale.
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. number of fine structure levels everywhere in the medium
>0 \:\ | but the degree to which different levels are resolved in their
- o y phase portraits strongly depends on the position in the me-
40 + o - dium relative to the defect. In view of this hypothesis the
£ | | phenomenon of spatial period-doubling should not be under-
i o stood in the literal sense but rather as an enhanced ability to
30 r W ] resolve the fine structure with the increase of separation from
- 7 T T A the defect.
20 b s . The stationary rotating spiral wave arises from the com-
\ plex defect-organized cooperation of local oscillators. Each
¥ location in the medium develops some site-specific pattern of
e oscillation which often differs significantly from that of the
1020 30 £ 40 50 corresponding rate law attractor and varies substantially from
n . : ) )
one space point to another. There existp@ssibly rotating
) reference framer(,0’), centered on the moving defect, in
¢ oz oae which local dynamics takes a simple, time-homogeneous
P b “Z o form. Each point of the medium in this frame can be as-
- S signed a unique oscillatory pattern, different for different
- oo spatial points. This allows one to introduce the notion of a
D defect-organized field associated with/ (') which speci-
“ fies the pattern of dynamics in every spatial point of the
medium. This field exhibits a complicated architecture lack-
ing of any simple symmetrigsvhich can be easily seen from
the shape of thé€) curve. The slow rotation of this field in
disk-shaped arrays restores the circular symmetry of the so-
lution. Although the manner in which different types of local
dynamics are distributed in the medium is complex, it is not
disordered. Due to the continuity of the medium maintained

number of long-time ¢>T,) local trajectories on a circle by the diffusion, it obeys certain topological principles stud-
with radiusr,=55 surrounding the defect in the square do-i€d in the subsequent sections.

main. One sees a significant dependence of the shape of

C(ry,0|7) on the angled. The local trajectories range from IV. COARSE-GRAINED DESCRIPTION

a period-1 orbit at the intersection with to the well- OF LOCAL TRAJECTORIES

established period-4 orbit observed in a certain rangé. of

To highlight the loop exchange phenomenon, a particula[OC
time instantt=t* is marked on all the trajectoridsee Fig.

9). Compare the twdC(r,6|7) at the locationsd; and 6,
chosen symmetrically on either side of the po#it 6
where the circle intersecQ. Visual inspection of these or-
bits shows that their shapes are essentially identical but re
resentative points(4,,t*) andc(6,,t*) appear on different
period-2 bands of the corresponding orbits. This clearly dem
onstrates that the period-2 bands do not just approach b
indeed pass each other &t 0, , exchanging their positions

FIG. 10. Cumulative first-return map(6) for the square array
(k,=1.567L.=80,0=0) (top panel and a magnification of a por-
tion of its structure(bottom panel Letters on the bottom panel
denote radii for which corresponding portions G{#) are con-
structed:(a) 9; (b) 19; (c) 25, and(d) 31.

In the preceding section the phase space shapes of the
al trajectories were shown to vary considerably but
smoothly from one point in the medium to another. To de-
scribe the transformations of these orbits into each other, it is
useful to introduce a description which captures only topo-
logically significant changes of phase portraits and disre-
jards unimportant details. To understand the topological
principles which determine the global organization of the
defect-organized field one also needs a means to compare the
e dependence of local trajectories. In this section we

in oh Sj i " A K tati gesent a scheme that allows one to partition the continuum
In phase space. since It 1S not necessary 1o work in a rotatinge 5 the opserved local trajectories into a finite number of

coordinate system in the case of a square dc_)mam, ON€ Mallfscrete classes according to their phase space shape and
resolve the fine structure of the local trajectories to a greatef o dependence

degree as can be seen in Fig. b which shows the cu-
mulative first return may(6) and a magnification of a por-
tion of its structure(compare with Fig. & The results show
that G is comprised of four branches with the fine structure ~ Consider a period-2attractor,P,n, consisting of 2 loops

of period-4 resolved even in the vicinity of the defectin the concentration phase spae- (cy,cy,C,). Using the
[r=5 is the closest distance to the defect for whifin) is  cylindrical coordinate system introduced earlier, we may
showr]. Any perturbation of the self-organized pattern of projectP,n on the (p, ) plane preserving its original orien-
local oscillator synchronization due to irregular motion of tation and three-dimensioné8D) character by explicitly in-

the defect, influence of the boundary or the presence of arflicating whether self-intersections correspond to over or un-
other defect may obliterate subtle fine structure of the locafler crossings. Such a projection shows a spag fite from
trajectories. In such a circumstance one is able to observerossings where loops are essentially parallel to each other.
only two gross branches d@& and their split nature is not This span can be used to number loops, say, in the order of
resolvable except for very large These observations allow their separation from the origin. This procedure m#ps

one to suppose that the local trajectories may have the sanoaito a closed brai®,n [16]. Figure 11 illustrates the con-

A. Representation of attractors by closed braids
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— T variables are different,(t) #c,(t). Since the orbits are pe-
riodic there is a timest such thatc,(t+ 6t) =c,(t) for any

t. This operation can be formally considered as an action of
translation operatof on the trajectory of the first oscilla-
tor:

TCa(t)=cy(t+ 6t) =cy(1). ®

The concentration time serieét) of the first oscillator then
appears to be shifted backward By relative to that of the
time series of the second oscillator >0 and forward
otherwise. Of course, trajectories corresponding to different
attractors cannot be made to correspond by such time trans-
lations, e.g.,P,n attractors described by different permuta-
tions rri(”) have different patterns of oscillation, but even if
two P,n lie in the samer(" class their actual shapes

may differ significantly.

To compare the local dynamics at different points in the
medium one needs to single out the most important charac-
teristic features of the oscillation pattern while discarding
unnecessary details. A coarse-grained symbolic description
of trajectories appears to be useful for this purpose. We as-
sume that the times; ,t,, ... ton at which the trajectory
crosses a surface of sectigr= ¢, (see Sec. )lare approxi-
mately equally spaced, independent of the choicepgf
Thus, the phase poim{t) moving alongP,n takes approxi-
mately the same tim&,n/2" to traverse each loop of the
attractor[17]. At t=t, let the phase point of the period-2
orbit be on thejg-th loop of Pon, at t=ty+T,n/2" on the
struction of the braid representation for tRg attractor of j1-th loop, and so ottwherej, e[1,2"],1 [1,2"],j 1) until
the WR model. It is convenient to subdivide the closed braicytt=t,+ T, the phase point returns to thgth loop and the
B,n into the open brai®,» (separated by dashed lines in Fig. pattern §g,j;, ...,j,n) repeats. The symbolic string
11) and its closure where threads run parallel to each othersj:(jo,h, ...,jon) constructed in this way captures the
The direction of the flow on the attractor is indicated by themost significant gross features of the oscillation pattern it
arrows. Each crossing on the projectionRof corresponds to  describes. In this coarse-grained representation the number
an elementary braid; which refers to the fact that thread of possible nonidentical trajectories corresponding to a par-
i overcrosses thread+ 1 (cf. Fig. 17 in Appendix for nota- ticular #{" of P,n is finite and the different trajectories are
tion rule). An undercrossing will be designated by *. A simply given by the 2 cyclic permutations of; . Likewise
braid may be described by a braid word that gives the ordethe time translation operators constitute a finite grayp
and types of crossings of braid threads. For example, for the. [ —2"~1 21~1) They act on the symbolic string represent-
closed braid corresponding toP, (cf. Fig. 1) ing the orbit to give one of its cyclic permutations. From its
P,—B4=030,0,030,. The closed braid,n corresponding  definition it can be easily seen thaf") serves as a symbolic
to P,n can be represented by several braid words, which capermutation representation df,; for the corresponding
be transformed into one another by a set of allowed movep-th permutation class d®,n. Indeed, consider as an example
(see Appendix a period-4 oscillation whose representative point lies on loop

Any braid word representing,n induces a permutation 3 at the reference moment of tirhe t,. Then for the pattern
7{" describing the order in which loops &% are visited of oscillation determined by 7{? the state reads
during one oscillation period@n. In general, eacRn attrac- s, =(3241). To obtain the new state translatedTy4 back-
tor is represented by several possibi”, their number ward one acts os, by the permutation representatio|?
growing with n; for example, forP, there is only one per- of the 7. ; operator to get
mutation 7{Y= (33 while two permutationsm{?)= (3233

(which corresponds to the braid shown in Fig.) ldnd T, 151= (3557 (3241 = (2413 =s,, C)
(2)_ (123 ; ; ; ;

m$2)= (3239 exist for P,. With a given loop numbering con- . : . I

vention each braid word represents a unique permutatio\ﬁvh'Ch correctly describes the result of the shift of the initial

while one permutation can be induced by many braid Wordsstatesl'

FIG. 11. Projection of th@, attractor on thed, ,c,) plane(top
pane) and the corresponding closed brddd (bottom panel

B. Symbolic representation of periodic orbits V. GLOBAL ORGANIZATION OF MEDIUM

Take two period-2 oscillators whose trajectories A. Period-1 regime

c1(t),c,(t) lie on the same attractor, but which are neverthe- We now return to the spatially distributed medium and
less nonidentical since at any given tirhgheir dynamical begin by reviewing some properties of the local dynamics in
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cillation and the sign is that af;. Thus, the oscillation pat-
tern is continuously time shifted alonf such that upon
return to the initial point it has experienced translation by the
period.

B. Period-2" regime

For 2"-periodic and chaotic media propert#) holds
where ¢(r,t) should be understood as the angle variable
introduced in Sec. Il. This can be seen from the following
argument. Take a period-2 medium with rate constants cho-
sen in the vicinity of the bifurcation from period-1 to
period-2 such that the attractér, of (2) lies infinitesimally
close toP; from which it bifurcated. Due to the continuity of
the solutions of the reaction-diffusion equati@), the value
of $¢(r,t)dl cannot change abruptly when the bifurcation
parameter is changed through the period-doubling bifurca-
tion. This implies that thes-curve constructed for a contour
I' in a period-2 medium, as in case of a simple period-1
medium, is a closed curve which loops once aroahdn
phase space. This is illustrated in patt®lof Fig. 12, which

FIG. 12. S curves(shown by diamondsconstructed fol™ with showssS for contourl” with radiusr,=>55 in medium with
ro=55 in period-1 oscillatory £,=1.420) (@) and chaotic x,=1.567 and tim¢=t*. Recall again that the points of the
.(K2:_t|..567) (b) media. Solid curves represent short-time local tra- § cyryve have to lie on the local trajectoriéﬁ(rlto,f), r
Jectories onl". eI (cf. Fig. 9, where points designated by diamonds lie on
the vicinity of a stable defect with topological charge S for the chosen time moment and contour shown in the

ne=+1 in a period-1 oscillatory medium. Consider a cyclic figure). Since the local trajectories in a period-thedium
path T ={r =ry>r .y 0[0,2m)} surrounding the defect. loop several times arounzf, the curveS which winds only
Here r.y iS a radius such that for allr(6),r>r.,6 ©ONCe fi;==1) aroundc* cannot span the entire local tra-
e[0,27) the shape of the local orbit in phase spgeds  jectory as is the case for a period-1 medium. As one sees
independent of i(,#) and closely approximates that of the from Fig. 12b), S follows the larger loop of the local trajec-
period-1 attractor of the mass action rate Il@se Sec. )L If tory, which forI" with ry=55 is typically a period-2 orbit
one starts at an arbitrary pointy, 6y) € I one finds that the (cf. Fig. 9, and instead of making the second turn on the
instantaneous local phasg(r,t) changes by zZ or —27  smaller loop, it crosses the gap between the loops and closes
(depending on the sign of the topological chargeng!I. on itself. Although the shape &f changes with timésee[ 7]
Let us now fix a particular time instant=t* and construct for detaily, for anyt* there exist segments & which con-
the set of pointsS={c(r,t*),r eI'} as a phase space image nect different loops of local trajectories. This behavior of the
of instantaneous concentrations at points lyinglanThe S curves would be impossible if loop exchanges were non-
property of a defect4) and the continuity of the medium existent. The analysis shows that the segment$ advering
insure thatS is a simple closed curve winding once aroundthe gaps between the loops of the local trajectories are im-
c*. Figure 12a) shows theS-curve constructed for the con- ages of points oi” which lie close to the intersection with
tour I" with radiusr =55, ro>r.xin a period-1 oscillatory the Q curve. Thus, the loop exchanges observed in period-
medium with x,=1.420. Since all the points on the 2" media are necessary to reconcile the contradiction be-
S-curve lie at the same time on the local trajectoriestween the one-loop topology of th& curves determined by
C(r|tg,7), rel’ with t*e[ty,to+7], and for ' with  the presence of a defect and the multiloop topology of the
ro>>Trmax all the local trajectories are the same and approxidocal trajectories determined by the local rate law.
mated by the period-1 attractor of the systdR), the The change of the local trajectories along the contour
S-curve simply coincides with this attractor for amy [cf. period-2' media can be considered in terms of time transla-
Fig. 12a)]. The S-curve constructed for an arbitrary simple tions if one adopts a generalization of the translation opera-
closed path encircling the defect in the medium possesses thien in the following way. In a period-2 medium let the con-
same property as long as the path lies in the open regiotour I" and the reference point {,0,) T’ be chosen so that
F>rmax- I' intersects the) curve in the single pointrg,6,) and
This result can be reformulated in terms of time transla-suppose that these points are sufficiently separated from each
tions of local trajectories as follows. Let the local trajectory other. Since the shapes of the local orbits change signifi-
C(rg,6|to, ) at the point ¢o,6,) e’ be taken as a refer- cantly along any closed path surrounding a defettFig. 9
ence, then all of the local trajectories bncan be obtained these trajectories cannot be made to coincide by time trans-
through the translation ofC(rq,60/tg,7) by some time lation as this operation is defined in Sec. IV. Nevertheless,
St(6—6y) (see Sec. IY. The condition(4) implies that the general features of the temporal pattern of the trajectories
St(0— 6y) is a monotonically increasin(decreasingfunc-  are preservede.g., sharp maxima ig;(t) time serie$ and
tion such thatst(27)=*=T, whereT, is the period of os- for two locations (,,6;) and (,,6,) one is able to find a
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Assume that all the deformations of the phase space portrait
of the local trajectory which take place aloihy including

the exchange of loops, occur at the pofht 6, so that the
passage through, shifts the oscillation byt,=T;=T,/2.
Then the result of the continuous time translation that occurs
during 27 circulation alongl’ may be described by the ac-
tion of the 7711 operator (;=*1), while the result of the

loop exchange is described by the operafor, [18]. The

total transformation of the local oscillation after a complete
cycle overI' is equivalent to the identity transformation and
thus the result is in accord with continuity of the medium. If
one makes the assumption that loop exchange does not occur
on some contoufl’ encircling a defect withn,|=1, the time
shift function ét(6— 6,) becomes monotonic and continuous
everywhere onl’. As a result one arrives at the incorrect
conclusion that starting from the pointy, ;) with the os-
cillation pattern symbolically represented by the strig
says;=(12), and moving alond' in the clockwise direction
one returns to the same pointy(6y+2)=(rq, 60, but
with the oscillation pattern shifted by,/2 and given by
s,=(21)#s,. Note that this contradiction does not arise in
the period-1 oscillatory medium where circulation over any
FIG. 13. Period-2 local concentration time serigér,t) calcu-  closed path encircling a defect results in the translation by
lated on a cyclic patii™ surrounding the defecta) series sampled the entire period which automatically satisfies the continuity
at four consecutive locations separateddsy=30°; (b) two series  principle. Thus the necessity of loop exchanges in period-
sampled at locations chosen symmetrically on either side of the" n>Q media with a topological defect demonstrated ear-
intersection with thef) curve. lier in this section in terms of curves is now explained in
] ] _ terms of time translations.
time shift At(6,,6,) such that some measure of the devia-  The results for the period-2 medium can be generalized
tion between the trajectories, say, for anyn>1 using the following hypothesis. From the main
tot 7 proper_ty _of_ a t(_)pologica_l defect) it_ follows that integration
M(At(al,ez)):f [cP(t+At)—c@(t)|dt, (10) of an infinitesimal continuous shifi(St) over any closed
to path surrounding a defect results in a total shift by
+T,n/2" and can be symbolically described by the opera-

a reference and comparing it to all the other local orbits or{or. Numerical simulations demonstrate the existence of time
I' one is able to define the time shift function ranslation discontinuity points such that sum &f jumps

St(6— 65)=At(6,6,). The shift function dt(6— 6) in- over these points amounts to a shift®fl ,n/2" described by

creasesor decreasgsnonotonically and almost linear[gee the T*”t operator. The locations of these points in the me-
Fig. 13a)] with d(st)/d6~(T,/2)2m everywhere ol ex- dium can be identified with th@ curve and the origin of the
cept for a small neighborhood af= 6,, where it exhibits time translation disc_ontinuities with the Ipop exchange phe-
break. Indeed, the loop exchangeéat 6, causes the dis- Nnomenon. The relatiofA6) of the Appendix connects trans-
continuity of 8t(6— 6,). At 6= 6, both loops of the local lations and loop exchanges and allows one to predict the
orbit become equivalent and the oscillation is effectivelynumber and the kind of loop exchanges necessary to perform
period-1 with periodT,=T,/2. Since the loops exchange at the required7_, translation.

0= 60, to find the best matctiL0) between local trajectories

sampled at pointsrg, 6o —¢) and (ro,60q+ €), one needs to D. Examples

translate one of the trajectories By=T,+ O(e). This can
be easily seen in Fig. 18), which displays twa,(t) series
calculated at spatial points lying— 6,=+10° on either
side of 6 onT'.

40

20

c.(1)

is minimized. Choosing the local trajectoB(r o, fo|to,7) as

Consider again the square 880 array with rate con-
stants corresponding to chaotic regime,€1.567). As
period-4 fine structure is the highest level of local organiza-
tion resolved in the medium, it is sufficient to use the for-

_ _ malism developed above fét, to describe the local dynam-
C. Trajectory transformations along I ics. The analysis shows that in the bulk of the medium the

The transformation of local trajectories alofigcan be  oscillation is given by ther{?= (3339 pattern[19]. Using
imagined to occur as a result of two separate processes. Suis data and the results presented in the Appendix one can
pose everywhere ofi exceptd= 0, the shape of the local easily enumerate all the sequences of exchanges resulting in
trajectories inP is the same and is equivalent to that of 7., translation. Indeed, one should expect either exchange
C(rg,6ltg,7). Then all the other local trajectories of loops 3 and 4 followed by the exchange of period-2 bands
C(ro,0|ty,7),0€[0,27),0+ 6 can be found by time trans- %ﬁ;) or first the period-2 bands exchange followed by ex-
lation of C(rg,8g|to,7) by 8t(0—0p)=[To(6— 6)/2]27.  change of loops 1 and 2. Figure 14 is a schematic represen-
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FIG. 16. Segment of the concentration time sedgs,t) cal-
culated for the disk-shaped array,=1.567R=80) at r=76
showing theT /4 time shift of the oscillation patter(see explana-
tion in the texj.

FIG. 14. Sketch of theQ curve for the square array
(k,=1.567L.=80). The points were obtained from simulations.
The rayABC intersect«() at locations with radii 20 and 31.

tation of the medium with a negatively chargedi€—1)  appears to be shifted by,/4 relative tosg and by T,/2
defect in the center and tH2 curve displayed. relative tos, .

Consider the change of the oscillation pattern along ray The existence of &,/4 shift after crossing can also be
ABC emanating from the defect as the valuerdhcreases seen from the results for the disk-shaped array \ith80.
(see Fig. 10 for the cumulative first-return map constructedigure 16 shows a segment of thg(r,t) time series
for this ray). The pattern of oscillatiors,=(4132) corre- sampled in a fixed framer (¢) atr=76. In this coordinate
sponding to permutationr{?)= (1239 can be followed from System() slowly rotates clockwiseagainn,= —1) with pe-
r=5 tor=19 where the period-2 bands undergo exchangeiod Tex. Two time windows each of length, marked by
This results in the switch to the oscillation pattern describedlotted lines and separated hy=8T, allow one to see how
by 77(22): }éﬁ seen ar =21. The patternn(f) is restored the oscnlatlc_)n state(4132 is substituted by its forward
after loops 1 and 2 exchange mt 22 and and this pattern T,/4 translation(2413 after the() curve passes the observa-

persists until another exchange occurs aR8. Using trans- 10N Point att=te,.
lation operator7, ; one can express the transition of the state
sa (r<20) through the sequence of loop exchanges de- VI. CONCLUSIONS

scribed above to the statg=(1324) (for 22<r<28) as General principles underlie the organization of

Sg="7.155. The same shift can be achieved by continuousyn_nejgdic or chaotic media supporting spiral waves. As in
translation along the pathDEFB which does not intersect gjmpje oscillatory media, the core of a spiral is a topological
) but winds once counter-clockwise around the defect. Th@yefact which acts as an organizing center determining dy-
c,(t) time series at point&,D,E,F andB are displayed in  amics in its vicinity; however, the structural organization of
Fig. 15 and demonstrate that this is the case. Continuing tghe medium that arises from the existence of the defect is far
advance along the ra4BC, one finds that at=28 loops 3 mgre complicated. Due to the absence of a conventional
and 4 exchange and oscillation switches once more to thgefinition of phase for oscillations more complex than
state corresponding ters”. After the period-2 band ex- period-1, the identification of a defect in terms of the relation
change arr =32 the pattern corresponding 6> is rein-  (4) is not obvious and requires the introduction (@ften
stated and remains unchanged forra32. Again the oscil- model-dependehiphase substitutes which for some systems
lation at r>32, described symbolically bysc=(3241), may be provided by angle variables. Despite the complica-
tions with the definition of phase, one can identify a defect in
terms of local trajectories. Indeed, as one moves away from
the defect the local dynamics takes the form of a progression
of period-doubled orbits, from near harmonic, small-
amplitude, period-1 orbits to “noisy” period!2 orbits,
wherel is a function of variables such as diffusive coupling
and the system size and shape.

The presence of a defect imposes topological constraints
on the global organization of medium as well. As was shown
above, when 2>n, the 2'-loop structure of the local trajec-
tories conflicts with the period; structure of theS-curve

0 ' ' ' ' ' and a complex, asymmetric, spatial pattern of local dynam-
' t ) ics, the defect-organized field, arises as a result of the neces-
sity to maintain the continuity of the medium. The most

FIG. 15. Concentration time serieg(r,t) calculated at points prominent characteristic feature of this field is tecurve
A,D,E,F,B of the square array shown in Fig. 14. defined as the set of points where the local dynamics most

20

c,(1)
10
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Sec. V) to show how loop exchanges affect the pattern of

L i ) oscillation. We demonstrate that those combinations of loop
)2 &k ( = exchanges that produce identity transformationB pfresult
a \ b
J J

1

i

Each closed braidB,n is represented by a set of non-

© identical braid words with their number rapidly growing with

in nontrivial time translations of trajectories.
(o)

n. Without violation of the topology oB,n they can be
SN f transformed into one another by the following set of moves
I S (see, e.g.[16]): 1. commutation relationoioj=0j0;,

( s c li—jl=2; 2. type 2 Reidemeister move,oio;*

) D =0, 'o;=1;, 3. type 3 Reidemeister moveg o0,

‘ l % =0i,1070i4+1; 4. first Markov move,o;30; '=07 S0
— =3,3 e B; whereB is a set of open braids. While the first

three rules are common for all braids, rule 4 is specific for
/
‘ ‘ % d closed braids. Indeed, it can be written in the form
02 =20, which, for elementary braids;, corresponds to
_ . _ . ~ moving o; around B,n resulting in the exchange of the
FIG. 17. Conventional Qe5|gnat|orjiand basic braid mo®s:  ¢|5sed braid loopgcf. Fig. 11d)]. Type 1 Reidemeistefor
definition ?f eler;(eF?tgc:y bre}'?s‘ ando; ’(2) tfy_pi‘ ?\A Rekldemelster second Markoy moves are not allowed since they do not
EnEO\I{:l Eg)seﬁ’se arbit?;rertr)lrea;?der move; ard) first Markov move preserve the number of loops, an essential featur®ef
P y attractors. While rules 1, 2 and 3 do not affedt?, the first
closely resembles period-1. This signals the exchange dflarkov move doegexcept for the degenerate case Rf
period-2 bands. If the local trajectories possess structure fin&yhich is represented by the single permutatmfl)). Thus
than period-2, other loop exchanges leading to more subtlgny number of rearrangements affecting only the bjd

changes in the local orbits can be found in the vicinity of ¢ e ¢losed braidB, leave the braid word in the same
Q. The net result of these exchanges is to produce a time - utation classr™  while each application of the first
shift of the trajectories which compensates for the smoot o= PP

arkov move yields a new permutation class.

time translation accumulated on continuous paths. Since th
topological continuity must be observed on any arbitrarily
large closed path encircling a defect and, therefore, this con- 1. Loop exchanges foP, and P,

tour has a point of intersection wit, a single defect in a W ine how the | h infl th
period-2' (n>0) medium cannot be localized. € now examiné how he loop exchanges Influénce the

We point out again that many of the phenomena we hayv@atterns of oscillation for the_period—Z_ and pericidl-4 attrac-
discussed above are not dependent on the existence ofiyS- FOrP one has _onlylthe ?mg_le braid woed (o, 7) and
period-doubling cascade or chaotic local dynamics, althougkn€ single permutationr)=(33) induced bycy. Two dif-
this is the case we have analysed in detail. Reactionferent symbolic states,=(12) ands,=(21) are possible for
diffusion systems with local complex periodic orbits in phasethe period-2 oscillation with respect to some fixed time
space dimensions higher than two should exhibit similar feaframe. We introduce an operaté{* whose action on the
tures when they support spiral waves. It should be possible tolosed braid representing, is to moveo; by 27 in a di-
experimentally probe the phenomena described in this papeiection opposite to the flow. The result of the action of this
The appropriate parameter regime can be determined fromperator, which is the first Markov move fa&=1, is to
investigations of well-stirred systems. For example, periodleave the attractoP, unchanged; however, one finds that
doubling and chaotic attractors have been observed in thieops 1 and 2 have exchanged their locations in phase space.
Belousov-Zhabotinsky reactioh20] If the spiral wave dy- In the time series for the dynamical varialigt) the ex-
namics is then studied in a continuously-fed-unstirred reactothange can be seen as a substitution of taller max&nhy
[21], one should be able to observe the characteristics of thghorter maximdl) and vice versa. If this process is followed
spiral dynamics and the loop exchange process that serve astime it produces the characteristic pattern shown in Fig. 7.

M
1

signatures of the phenomena described above. Thus, application oA{) to P, induces a transformation of
the oscillation states; into s, and vice versa. This can be
ACKNOWLEDGMENTS symbolically described as an action of an exchange operator
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One sees that the action of{") is equivalent to that of
APPENDIX: BRAID MOVES AND 7., which translates the oscillation pattern by half a period.
LOOP EXCHANGE OPERATORS The inverse of the braid operatéé” can be introduced in
In this appendix we make use of the projection of the@n analogous way as an operator mowingalongthe direc-
period-doubled attractor®,n onto closed braidB,n (see
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tion of the flow. It corresponds to an exchange operator
(AM)~1=7_, acting on strings. Since fd?, application of
7., or 7_, results in essentially the same states the sign of
the shift is chosen to maintain consistency with correspond-
ing operators foiP,n, N>1. Double application ofA{") re-
sults in translation by a full period and thus in the identity
operator

(AP)2=(AP)2=1. (A2)

The P, attractor possesses a richer set of transformations.
Since under coarse-graining braid words which induce the
samewi(”) are indistinguishable, we can single out two es-
sential representativesS ;=053 for #{P=(33) and
S,=0,3 for #P)=(333), where3 stands foro,o,030,.

Let A(lz) be an operator o8, which moves the double-
thread crossingcf. large dashed box in Fig. 12 by 27 in
the direction opposite to the flow, analogous to the action of FIG. 18. BraidBg constructed for thég attractor.

A on o, for B,. In fact, the action oA{?) can be seen as _ ,

an exchange of the period-2 bandsRyf, each consisting of Onstrate this let £5)? act on the trial states,;=(3241).
two period-4 loops. UnlikeA{") the operatoA{?) alternates APPIying the rules one obtains

braid words zirl(]g the corresponding pattern-defining permuta (A(zz))ZSF (%igﬁ)(ﬁﬁ)(3243=(4l32} —T,,5,, (A3)
tions 31,72 35,78 . The application ofA{?) induces  thus relating the simultaneous loop exchange (1824)
transformations of symbolic stringg which again can be with translation of the period-4 oscillation by half of a pe-
described by the action of an exchange operat? repre-  riod. This implies as well that application of&) four times
sented by the permutatiodsfy. Due to the apparent simi- results in  the identity string transformation
larity of action of A{Y andA{?) on the corresponding attrac- (A%?))*=7, ,=1 and, therefore, 4?) ~1=(4?)3. Compo-
tors, A?) inherits the algebraic properties oK. Indeed, sitions of braid operatora{?) and A{%?) provide another ex-
A‘f) produces identity operator when applied twice and,ample of how identity braid operators induce nontrivial
thus, is equal to its inverse. string transformations. Since both operators and their in-

Finer rearrangement of thé, loop structure is provided verses alternate braid words, <X, the application of the
by the action otA(zz) defined as an operator which moves thecomposition of any two of them returns the braid to the same
single crossingenclosed in the smaller box in Fig. by ~ m{? permutation class and, thus, the resulting string trans-
2 in the direction opposite to flow. From the structure of formation is equivalent to some translation. The relations for
B, one sees that after application & the single crossing the compositions of thed{?) and A% operators can be ob-
does not return to the same location7irbut appears on the tained directly from their symbolic representations:
other period-2 ban_d; thus, brai_d _vyords and permutatio_ns ARl AR) = (1234 (1238 _ 42), 4(2)_ (12341234 _ (123
alternate. Depending on the initial state, the application of “*1 ™2 124313412 2 71 3121213 3421

A results in different loop exchanges. In the case of S

3.,= 033 action ofAl?) leads to the exchange of loops 3 and (AQ)
4 and results in the string transformation described by the

exchange operatad$?) with symbolic representationi{>g). AP (AP 1= (G130 (559 = (AP 1o AP = (3319 (15

When it acts or® ,= 0,2 it exchanges loops 1 and 2 and the
permutation representation of$?) changes to 9. The
inverse ofA%?) moves the single crossing along the flow andThese relations are constructed using the assumption that the
produces opposite results; i.e., acting Bn it leads to initial state of the braid i ;. Although application to an
12 exchange and when applied X, it results in the alternative initial condition changes actual permutation rep-
exchange 3-4. resentations of the exchange operators it yields algebraically
Note the difference between action Af" on braids and equivalent results. Frorti4) one sees that all the exchange
the action of exchange operatcuzé”) on symbolic strings. operators commute and their compositions provide operators
While several operationss\i(”) applied to the same initial which translate the oscillation by all the allowed multiples of
braid word lead to equivalent final Worc{s.g.,A(lz) and Ta/4
A(ZZ)) the resulting loop exchanges and, thus, their permuta-
tion descriptions, can be quite differenf{s and (239 for
the example chosgnConsequently, compositions of braid A generalization of the phenomena discussed above to
operations returning the braifl,n to its initial state(e.g., arbitraryn may be inferred from the observation of the struc-
AP AP) may induce nontrivial translations ef. To dem-  tural organization of the closed brai@lg corresponding to

_ 1234 (2)_
—(43112&)—77(2)—7:1-

2. Loop exchanges forP,n attractors
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period-doubled attractom3,n. Indeed,B,n+1 can be obtained again described by the action of permutation operaﬂi,ﬁ%
from B,n by doubling each thread &,» and adding a single on symbolic stringss;. The fact that the crossing blocks
crossing on top to preserve simple connectivity of the conimove independently results in the commutivity of operators
struction. The braidB,n arising as a result ofi successive Aﬁ?) with each other. The geometry 8hn also defines the
iterations of this procedure can be subdivided intmon-  basic algebraic property 0"’ demonstrated above for the
overlapping structurally  similar  blocks of braids n=1,2 examples

EETT) ,m=1n. This principle of structural organization is il-

lustrated in Fig. 18 representingg and its three crossing (AM2"=1, me[1n]. (A5)
blocks shown in a series of boxes with decreasing sizes. The

analysis shows that these blocks can be moved as Who@ome compositions of the exchange operators yield transla-
entities alongB,n without interference from each other re- {gn operator; wherel e[ —2"1,2"~1y For the discussion
sulting in the exchange of those loops along which theysf the phenomena described in Sec. Il only the operator
move. The essential parts of these moves can be representgd and its inverse are of particular interest. Using induction
by a setAl of 27~ movements of structural blocks{” so  from the analysis of cases with smallone may infer the
that A(ln) corresponds to the largest block and results in argeneral expression for tHg, ; translation operator :
exchange involving all the 2loops, AY" corresponds to

movement of next-smaller braid block and results in the ex- n

_1 .
c_hange _of 2_ loops, _and so on. The transformations of Toq= H «451?)- (AB)
time trajectories resulting from exchanges of loops can be m=1
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